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The Likelihood for a Two-Dimensional Poisson
Exceedance Point Process Model

Seokhoon Yun1)

Abstract

Extreme value inference deals with fitting the generalized extreme value dis-
tribution model and the generalized Pareto distribution model, which are recently
combined to give a single model, namely a two-dimensional non-homogeneous Pois-
son exceedance point process model. In this paper, we extend the two-dimensional
non-homogeneous Poisson process model to include non-stationary effect or depen-
dence on covariates and then derive the likelihood for the extended model.
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1. Introduction

Let X1, ..., Xn be i.i.d. (independent and identically distributed) random variables
with common d.f. (distribution function) F . Suppose F belongs to the domain of attrac-
tion of an extreme value d.f. Gξ for some ξ ∈ R [F ∈ D(Gξ)], where

Gξ(x) := exp{−(1 + ξx)−1/ξ
+ }, x ∈ R,

y+ being defined by max{y, 0}. Throughout the paper the case ξ = 0 is interpreted as
the limit when ξ → 0, so that G0(x) = exp(−e−x), x ∈ R.

Write Mn := max{X1, ..., Xn}. Then the assumption F ∈ D(Gξ) means that there
exist normalizing constants an > 0 and bn ∈ R such that, as n →∞,

P{(Mn − bn)/an ≤ x} = P{Mn ≤ anx + bn} = Fn(anx + bn) → Gξ(x), x ∈ R, (1.1)

from which by letting z = anx + bn, µ = bn and σ = an we have, for large n,

P{Mn ≤ z} = P{Mn ≤ anx + bn} ≈ Gξ(x) = Gξ((z − bn)/an) = Gξ((z − µ)/σ)

= exp

[
−

{
1 + ξ

(
z − µ

σ

)}−1/ξ

+

]
=: H(z;µ, σ, ξ), z ∈ R (1.2)

(cf. Fisher and Tippett (1928), von Mises (1936) and Gnedenko (1943)). Here, H(z;µ, σ,
ξ) is called the GEV (generalized extreme value d.f.) with µ ∈ R, σ > 0 and ξ ∈ R
as its location, scale and shape parameters, respectively. Based on the approximation
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(1.2), one often fits the GEV to the annual maxima of a data series if one is interested
in estimating high quantiles of F .

On the other hand, Pickands (1975) showed that if F ∈ D(Gξ), then for high u less
than the right end-point of F ,

P{Xi − u ≤ y|Xi > u} ≈ 1−
(

1 + ξ
y

φ

)−1/ξ

+

=: G(y; φ, ξ), y > 0 (1.3)

for some φ > 0. Here, G(y; φ, ξ) is called the GPD (generalized Pareto d.f.) with φ > 0
and ξ ∈ R as its scale and shape parameters, respectively. Based on the approximation
(1.3), one may fit the GPD to the exceedances over a high threshold u, instead of fitting
the GEV to the annual maxima.

Though each of the two models, GEV and GPD, is useful in its own right, there is
also an alternative technique combining them. In fact, Leadbetter, Lindgren and Rootzén
(1983) showed that an exceedance point process for exceedances over a high threshold
is asymptotically a Poisson process, which again can be extended to the case of a two-
dimensional non-homogeneous Poisson process (cf. Smith (1989)). The main attraction
of this result is that it allows the GEV and GPD models to be combined into a single
model. In this paper, we further extend the two-dimensional non-homogeneous Poisson
process approximation to include non-stationary effect or dependence on covariates and
then derive the likelihood for the extended model. This extended model is particularly
useful in dealing with extremal behavior of environmental time series data which typically
show non-stationarity such as intra-year seasonality, annual trend and etc.

2. The Two-Dimensional Poisson Exceedance Point Process
Model and Its Likelihood

As before, let X1, ..., Xn be i.i.d. random variables with common d.f. F and assume
that F ∈ D(Gξ) for some ξ ∈ R. Then, from (1.1), we have, as n →∞,

n(1− F (anx + bn)) → − log Gξ(x) = (1 + ξx)−1/ξ
+ , x ∈ R.

Letting u = anx + bn, µ = bn and σ = an, we thus have, for large n and high u,

n(1− F (u)) ≈
{

1 + ξ

(
u− µ

σ

)}−1/ξ

+

.

Define the exceedance point process Nn = {Nn(B), B ∈ B((0, 1])} by

Nn(B) = #{i : i/n ∈ B, Xi > u, i = 1, ..., n},

i.e. Nn(B) is the number of points Xi, i = 1, ..., n, with i/n ∈ B, which exceed the
threshold u, where B((0, 1]) denotes the Borel σ-field in (0, 1]. Then it is well known
that Nn is asymptotically a Poisson process on (0, 1] with intensity {1+ ξ(u−µ)/σ}−1/ξ

+

for large n and high u (e.g. see Leadbetter, Lindgren and Rootzén (1983) and Resnick
(1987)).
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This result can be extended to a two-dimensional Poisson process on (0, 1] × (u,∞)
(see Definition 2.1 for the definition of a d-dimensional Poisson process). From now on,
let n and u be fixed large and high, respectively. In fact, from the point of view of
statistical applications, one often assumes that the two-dimensional exceedance point
process N = {N(A), A ∈ B(D)} on D = (0, 1]× (u,∞) defined by

N(A) = #{i : (i/n,Xi) ∈ A, i = 1, ..., n}

is approximately a non-homogeneous Poisson process on D with intensity function

λ(t, y) =
1
σ

{
1 + ξ

(
y − µ

σ

)}−1/ξ−1

+

, (t, y) ∈ D

(cf. Smith (1989)). Then, for z > u, we have

P{Mn ≤ z} = P{N(A) = 0} ≈ exp

[
−

{
1 + ξ

(
z − µ

σ

)}−1/ξ

+

]
= H(z; µ, σ, ξ)

and

P{Xi > z|Xi > u} =
nP{Xi > z}
nP{Xi > u} =

E(N(A))
E(N(D))

≈ {1 + ξ(z − µ)/σ}−1/ξ
+

{1 + ξ(u− µ)/σ}−1/ξ
+

=
{

1 + ξ

(
z − u

φ

)}−1/ξ

+

= 1−G(z − u;φ, ξ),

where A = (0, 1]× (z,∞) and φ = σ + ξ(u− µ), since N(A) is approximately a Poisson
random variable with mean

∫ 1

0

∫ ∞

z

λ(t, y) dydt =
{

1 + ξ

(
z − µ

σ

)}−1/ξ

+

.

This result well agrees with those of both (1.2) and (1.3) for z > u, which is of course an
advantage in working directly with the non-homogeneous Poisson point process approx-
imation.

Definition 2.1 For a subset D of Rd (d ∈ N), let B(D) denote the Borel σ-field in D
and let N(A) denote the number of certain random points in A ∈ B(D). Then the point
process N = {N(A), A ∈ B(D)} is called a d-dimensional non-homogeneous Poisson
process on D with intensity function λ(x) ≥ 0, x ∈ D if

(i) for any A ∈ B(D), N(A) is a Poisson random variable with mean Λ(A) =
∫

A
λ(x)dx,

(ii) for every k = 2, 3, ..., N(A1), ..., N(Ak) are independent whenever A1, ..., Ak are
disjoint in B(D).

In particular, if λ(x) ≡ λ0, x ∈ D for some constant λ0 > 0, then N is called a homoge-
neous Poisson process on D with intensity λ0.
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The Poisson point process approximation to the two-dimensional exceednace point
process may be further extended to include non-stationary effect or dependence on co-
variates by allowing the parameters µ, σ and ξ to be time-dependent. From now on,
let X1, ..., Xn be independent and let n and u be fixed large and high, respectively. For
(t, y) ∈ D = (0, 1]× (u,∞), define

λ(t, y) =
1
σt

{
1 + ξt

(
y − µt

σt

)}−1/ξt−1

+

(2.1)

for some µt ∈ R, σt > 0 and ξt ∈ R. Assume that the two-dimensional exceedance point
process N = {N(A), A ∈ B(D)} on D defined by

N(A) = #{i : (i/n,Xi) ∈ A, i = 1, ..., n}

is (approximately) a non-homogeneous Poisson process on D with intensity function
λ(t, y), (t, y) ∈ D. Then, for z > u, we have

P{Mn ≤ z} = P{N(A) = 0} = exp

[
−

∫ 1

0

{
1 + ξt

(
z − µt

σt

)}−1/ξt

+

dt

]
,

where A = (0, 1]× (z,∞), since N(A) is a Poisson random variable with mean

∫ 1

0

∫ ∞

z

λ(t, y) dydt =
∫ 1

0

{
1 + ξt

(
z − µt

σt

)}−1/ξt

+

dt.

Take N1 = N(D), the number of exceedance points of u, and let (T1, Z1),..., (TN1 , ZN1)
∈ D denote the corresponding exceedance points. We then derive the likelihood based
on N1 and (T1, Z1), ..., (TN1 , ZN1). Write Ai = (ti − 4ti, ti] × (zi − 4zi, zi] for small
4ti, 4zi > 0, i = 1, 2, ..., which are assumed to be disjoint subsets of D. Then
N(A1), N(A2), ... are independent and each N(Ai) is a Poisson random variable satisfy-
ing that P{N(Ai) = 1} = λ(ti, zi)4ti4zi + o(4ti4zi) and P{N(Ai) ≥ 2} = o(4ti4zi).
Thus,

P{N1 = n, (T1, Z1) ∈ A1, ..., (TN1 , ZN1) ∈ AN1}
= P{N1 = n, (T1, Z1) ∈ A1, ..., (Tn, Zn) ∈ An}
= P{N(A1) = · · · = N(An) = 1, N(D \ ∪n

i=1Ai) = 0}

= P{N(D \ ∪n
i=1Ai) = 0} ×

n∏

i=1

P{N(Ai) = 1}

=

(
e−Λ(D)

n∏

i=1

λ(ti, zi)

)
n∏

i=1

(4ti4zi) + o

(
n∏

i=1

(4ti4zi)

)
,

where

Λ(D) =
∫ 1

0

∫ ∞

u

λ(t, y) dydt =
∫ 1

0

{
1 + ξt

(
u− µt

σt

)}−1/ξt

+

dt,
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since

P{N(D \ ∪n
i=1Ai) = 0} =

P{N(D) = 0}∏n
i=1 P{N(Ai) = 0}

=
e−Λ(D)

∏n
i=1(1− λ(ti, zi)4ti4zi + o(4ti4zi))

= e−Λ(D)
n∏

i=1

(1 + λ(ti, zi)4ti4zi + o(4ti4zi))

= e−Λ(D)

(
1 +

n∑

i=1

λ(ti, zi)4ti4zi +
n∑

i=1

o(4ti4zi)

)
.

Hence, the likelihood based on N1 and (T1, Z1), ..., (TN1 , ZN1) is given by

e−Λ(D)
N1∏

i=1

λ(Ti, Zi) = exp

[
−

∫ 1

0

{
1 + ξt

(
u− µt

σt

)}−1/ξt

+

dt

]

×
N1∏

i=1

[
1

σTi

{
1 + ξTi

(
Zi − µTi

σTi

)}−1/ξTi
−1

+

]
.

3. Maximum Likelihood Estimation

In the previous section we derived the likelihood for a two-dimensional Poisson ex-
ceedance point process model with unit time of a typical one-year period. In practice we
usually have a long time series of several-year data.

Now, suppose we have daily observations X1, ..., Xn of m years, which are assumed to
be independent. For a high threshold u, the two-dimensional exceedance point process
N = {N(A), A ∈ B(D)} on D = (0,m]× (u,∞) defined by

N(A) = #{i : (im/n,Xi) ∈ A, i = 1, ..., n}
is assumed to be (approximately) a non-homogeneous Poisson process on D with intensity
function λ(t, y), (t, y) ∈ D, given by (2.1), where µt = µt(β) ∈ R, σt = σt(β) > 0,
ξt = ξt(β) ∈ R, and β is a vector of another parameters. For instance, if one wants
to consider models of linear annual trends with the three extreme value parameters
and intra-year seasonality with the location parameter, then one may choose µt(β) =
β10 +β11t+β12 cos(2πt)+β13 sin(2πt), σt(β) = β20 +β21t and ξt(β) = β30 +β31t, where
β = (β10, β11, β12, β13, β20, β21, β30, β31).

If Nm (= N(D)) exceedance points of u are observed at (T1, Z1), ..., (TNm , ZNm) ∈ D,
then the maximum likelihood estimator of β is the value of β which maximizes the
likelihood L(β) given by

L(β) = exp

[
−

∫ m

0

{
1 + ξt(β)

(
u− µt(β)

σt(β)

)}−1/ξt(β)

+

dt

]

×
Nm∏

i=1

[
1

σTi(β)

{
1 + ξTi(β)

(
Zi − µTi(β)

σTi(β)

)}−1/ξTi
(β)−1

+

]
.
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Computing the maximum likelihood estimator requires a numerical method like the
Newton-Raphson method.
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