• Title/Summary/Keyword: Generalized G-metric space

Search Result 28, Processing Time 0.021 seconds

Generalized G-Metric Spaces

  • Hayoung, Choi;Sejong, Kim;Seung Yeop, Yang
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.773-785
    • /
    • 2022
  • In this paper, we propose the notion of a distance between n points, called a g-metric, which is a further generalized G-metric. Indeed, it is shown that the g-metric with dimension 2 is the ordinary metric and the g-metric with dimension 3 is equivalent to the G-metric.

FIXED POINTS OF BETTER ADMISSIBLE MAPS ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.885-899
    • /
    • 2000
  • We obtain generalized versions of the Fan-Browder fixed point theorem for G-convex spaces. We define the class B of better admissible multimaps on G-convex spaces and show that any closed compact map in b fro ma locally G-convex uniform space into itself has a fixed point.

  • PDF

COUPLED FIXED POINT THEOREMS FOR RATIONAL INEQUALITY IN GENERALIZED METRIC SPACES

  • Singh, Deepak;Tomar, Surjeet Singh;Rathore, M.S.;Chauhan, Varsha
    • East Asian mathematical journal
    • /
    • v.31 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • In modern times, coupled fixed point theorems have been rigorously studied by many researchers in the milieu of partially ordered G-metric spaces using different contractive conditions. In this note, some coupled fixed point theorems using mixed monotone property in partially ordered G-metric spaces are obtained. Furthermore some theorems by omitting the completeness on the space and continuity conditions on function, are obtained. Our results partially generalize some existing results in the present literature. To exemplify our results and to distinguish them from the existing ones, we equip the article with suitable examples.

NONLINEAR CONTRACTIONS IN PARTIALLY ORDERED QUASI b-METRIC SPACES

  • Shah, Masood Hussain;Hussain, Nawab
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.117-128
    • /
    • 2012
  • Using the concept of a g-monotone mapping we prove some common fixed point theorems for g-non-decreasing mappings which satisfy some generalized nonlinear contractions in partially ordered complete quasi b-metric spaces. The new theorems are generalizations of very recent fixed point theorems due to L. Ciric, N. Cakic, M. Rojovic, and J. S. Ume, [Monotone generalized nonlinear contractions in partailly ordered metric spaces, Fixed Point Theory Appl. (2008), article, ID-131294] and R. P. Agarwal, M. A. El-Gebeily, and D. O'Regan [Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), 1-8].

HUGE CONTRACTION ON PARTIALLY ORDERED METRIC SPACES

  • DESHPANDE, BHAVANA;HANDA, AMRISH;KOTHARI, CHETNA
    • The Pure and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.35-51
    • /
    • 2016
  • We establish coincidence point theorem for g-nondecreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings F, G : X2 → X by using obtained coincidence point results. Furthermore, an example is also given to demonstrate the degree of validity of our hypothesis. Our results generalize, modify, improve and sharpen several well-known results.

GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

  • Mohan Khatri;Jay Prakash Singh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.717-732
    • /
    • 2023
  • The goal of this paper is to analyze the generalized m-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized m-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space ℍ2n+1(-1) or a warped product ${\tilde{M}}{\times}{_{\gamma}{\mathbb{R}}$ under certain conditions. Next, we proved that a (κ, µ)'-almost Kenmotsu manifold with h' ≠ 0 admitting a closed generalized m-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized m-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(-4) × ℝ.

COINCIDENCE AND FIXED POINT RESULTS FOR GENERALIZED WEAK CONTRACTION MAPPING ON b-METRIC SPACES

  • Malkawi, Abed Al-Rahman M.;Talafhah, Abdallah;Shatanawi, Wasfi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.177-195
    • /
    • 2021
  • In this paper, we introduce the modification of a generalized (Ψ, L)-weak contraction and we prove some coincidence point results for self-mappings G, T and S, and some fixed point results for some maps by using a (c)-comparison function and a comparison function in the sense of a b-metric space.

GENERALIZED INTEGRAL TYPE F-CONTRACTION IN PARTIAL METRIC SPACES AND COMMON FIXED POINT

  • G. S. Saluja;Ho Geun Hyun;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.107-121
    • /
    • 2023
  • In this work, we study generalized integral type F-contractions in partial metric spaces and establish some common fixed point theorems. Also, we give some consequences of the established result. Our results extend and generalize several results from the existing literature.