COINCIDENCE AND FIXED POINT RESULTS FOR GENERALIZED WEAK CONTRACTION MAPPING ON b-METRIC SPACES

Abed Al-Rahman M. Malkawi ${ }^{1}$, Abdallah Talafhah ${ }^{2}$ and Wasfi Shatanawi ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science
The University of Jordan, Amman, Jordan
e-mail: math.malkawi@gmail.com and Abd9180065@ju.edu.jo
${ }^{2}$ Department of Mathematics, Faculty of Science
The University of Jordan, Amman, Jordan
e-mail: a.tallafha@ju.edu.jo
${ }^{3}$ Department of General Sciences
Prince Sultan University, Riyadh, Saudi Arabia; Department of Mathematics Hashemite University, Zarqa, Jordan
e-mail: wshatanawi@psu.edu.sa; wshatanawi@yahoo.com; swasfi@hu.edu.jo

Abstract

In this paper, we introduce the modification of a generalized (Ψ, L)-weak contraction and we prove some coincidence point results for self-mappings G, T and S, and some fixed point results for some maps by using a (c)-comparison function and a comparison function in the sense of a b-metric space.

1. Introduction

Bakhtin [6] and Czerwik [11] introduced the notion of b-metric spaces as a generalization of the notion of metric spaces. The idea of b-metric spaces has weaker than the triangular inequality axiom.

[^0]Also, many authors gave some fixed point theorems in the notion of metric spaces, for example see $[1,2,4,5,7,8,9,15,22,24,25,30,31,33,34,35$, $36,37,38,39,40]$. Also, for some work on b-metric, we refer the reader to $[3,10,12,16,17,18,19,20,21,23,26,27,28,32]$.

Now, we present the definition of the b-metric space.
Definition 1.1. ([6, 11]) Let X be a nonempty set and $s \geq 1$ be a real number. A function $d: X \times X \rightarrow[0, \infty)$ is called a b-metric if it satisfies the following properties for each $x, y, z \in X$.
(b1) $d(x, y)=0$ iff $x=y$.
(b2) $d(x, y)=d(y, x)$.
(b3) $d(x, z) \leq s[d(x, y)+d(y, z)]$.
In this case, the pair (X, d) is said to be a b-metric space.
The definitions of a Cauchy and a convergent sequence, as well as, the complete b-metric space are given as follows:

Definition 1.2. ([13]) Let (X, d) be a $b-$ metric space. A sequence $\left\{x_{n}\right\}$ on X is said to be
(1) Cauchy if $d\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n, m \rightarrow \infty$,
(2) convergent if there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ and we write $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.3. ([13]) The b-metric (X, d) is said to be complete if every Cauchy sequence in X is convergent.

Kamran [14] defined a new generalized metric space, called an extended $b-$ metric space as follows.

Definition 1.4. Let X be a nonempty set and $\theta: X \times X \rightarrow[1, \infty)$. A function $d_{\theta}: X \times X \rightarrow[0, \infty)$ is called an extended $b-$ metric if for all $x, y, z \in X$ the following conditions are satisfied
$\left(d_{\theta} 1\right) d_{\theta}(x, y)=0$ iff $x=y ;$
$\left(d_{\theta} 2\right) d_{\theta}(x, y)=d_{\theta}(y, x)$;
$\left(d_{\theta} 3\right) d_{\theta}(x, z) \leq \psi(x, z)\left[d_{\theta}(x, y)+d_{\theta}(y, z)\right]$.
The pair $\left(X, d_{\theta}\right)$ is called an extended $b-$ metric space.
In the following definition, Shatanawi [29] define a (c)-comparison function with base s.

Definition 1.5. ([29]) Let s be a constant $s \geq 1$. A map $\Psi:[0,+\infty) \rightarrow$ $[0,+\infty)$ is called a (c)-comparison function with base s if Ψ satisfies the following:
(i) Ψ is monotone increasing,
(ii) $\sum_{n=0}^{\infty} s^{n} \Psi^{n}(s t)$ converges for all $t \geq 0$.

If ψ is a (c)-comparison function, then for all $t>0$ we have $\psi(t)<t$ and $\psi(0)=0$.

Before starting to get our main results, we formulate the following new definitions. Then we give formulate and prove some our new results:

Definition 1.6. A single-valued mapping $f: X \rightarrow X$ is called a Ćirić strong almost contraction if there exists $\delta \in[0,1), L \geq 0$ and for $s \geq 1$ such that

$$
\begin{aligned}
d\left(f_{x}, f_{y}\right) \leq & \frac{\delta}{s} \max \left\{s d(x, y), s d\left(x, f_{x}\right), s d\left(y, f_{y}\right), \frac{1}{2}\left[f\left(x, f_{y}\right)+d\left(y, f_{x}\right)\right]\right\} \\
& +L d\left(y, f_{x}\right)
\end{aligned}
$$

for all $x, y \in X$.
Definition 1.7. Let (X, d) be a b-metric space. A mapping T is called a modification of (δ, L)-weak contraction if $\delta \in[0,1)$ and $L \geq 0$ be such that

$$
\begin{equation*}
d(T x, T y) \leq \frac{\delta}{s} d(x, y)+L d(y, T x) \tag{1.1}
\end{equation*}
$$

By using the symmetry condition of the b-metric space, then condition (1.1) is equivalent to

$$
\begin{equation*}
d(T x, T y) \leq \frac{\delta}{s} d(x, y)+L d(x, T y) \tag{1.2}
\end{equation*}
$$

Moreover, by (1.1) and (1.2), the modification of the (δ, L)-weak contraction condition of the mapping T can be replaced by the following condition:

$$
d(T x, T y) \leq \frac{\delta}{s} d(x, y)+L \min \{d(y, T x), d(x, T y)\}
$$

Definition 1.8. Let (X, d) be a b-metric space. A map T is called modification of (Ψ, L)-weak contraction if Ψ is a comparison function and $L \geq 0$ is such that

$$
\begin{equation*}
d(T x, T y) \leq \frac{1}{s} \Psi(s d(x, y))+L d(y, T x) . \tag{1.3}
\end{equation*}
$$

Using the symmetry condition of the b-metric space, then (1.3) is equivalent to

$$
\begin{equation*}
d(T x, T y) \leq \frac{1}{s} \Psi(s d(x, y))+L d(x, T y) . \tag{1.4}
\end{equation*}
$$

Thus by (1.3) and (1.4), the modification of (Ψ, L)-weak contraction condition of the mapping T with respect to G can be replaced by the following condition:

$$
d(T x, T y) \leq \frac{1}{s} \Psi(s d(x, y))+L \min \{d(y, T x), d(x, T y)\}
$$

Remark 1.9. Assume that $x_{n} \rightarrow z$ as $n \rightarrow+\infty$ in a $b-$ metric space (X, d) such that $d(z, z)=0$. Then $\lim _{n \rightarrow+\infty} d\left(x_{n}, y\right)=d(z, y)$ for every $y \in X$.

Theorem 1.10. Let (X, d) be a complete b-metric space and $T: X \rightarrow X$ be a modification of (Ψ, L)-weak contraction. Then T has a unique fixed point.

Proof. Start $x_{0} \in X$, we construct a sequence $\left(x_{n}\right)$ in X such that $x_{n}=T x_{n-1}$ for all $n \in \mathbb{N}$. Since T is a modification of (Ψ, L)-weak contraction, we have

$$
d\left(T x_{n-1}, T x_{n}\right) \leq \frac{1}{s} \Psi\left(s d\left(x_{n-1}, x_{n}\right)+L d\left(x_{n}, T x_{n-1}\right)=\frac{1}{s} \Psi\left(s d\left(x_{n-1}, x_{n}\right)\right.\right.
$$

So

$$
d\left(x_{n}, x_{n+1}\right)=d\left(T x_{n-1}, T x_{n}\right) \leq \frac{1}{s} \Psi\left(s d\left(x_{n-1}, x_{n}\right)\right) .
$$

Induction on n implies that

$$
d\left(x_{n}, x_{n+1}\right) \leq \frac{1}{s} \Psi^{n}\left(s d\left(x_{0}, x_{1}\right)\right)
$$

for all $n \in \mathbb{N}$. Triangle inequality implies that for $m>n$, we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq \sum_{k=n}^{m-1} s^{k} d\left(x_{k}, x_{k+1}\right) \\
& \leq \sum_{k=n}^{\infty} s^{k} d\left(x_{k}, x_{k+1}\right) \\
& \leq \sum_{k=n}^{\infty} \frac{1}{s} \Psi^{k}\left(s d\left(x_{0}, x_{1}\right)\right) .
\end{aligned}
$$

Since Ψ is a (c)-comparison function, $\sum_{k=n}^{\infty} s^{k} \Psi^{k}\left(s d\left(x_{0}, x_{1}\right)\right)$ is convergent and so $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, $\left\{x_{n}\right\}$ converges with respect to τ_{d} to a point $z \in X$; that is, $\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=d(z, z)=0$. Since $x_{n}=T x_{n-1}$, we conclude that $T x_{n} \rightarrow z$.

Now, we claim that $d(z, T z)=0$. Now,

$$
\begin{aligned}
d(z, T z) & \leq s\left[d\left(z, T x_{n}\right)+d\left(T x_{n}, T z\right)\right] \\
& =s\left[d\left(z, x_{n+1}\right)+d\left(T x_{n}, T z\right)\right] \\
& \leq s\left[d\left(z, x_{n+1}\right)+\frac{1}{s} \psi\left(s d\left(x_{n}, z\right)\right)+L d\left(z, x_{n+1}\right)\right] \\
& \leq s\left[d\left(z, x_{n+1}\right)+d\left(x_{n}, z\right)+L d\left(z, x_{n+1}\right)\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain

$$
d(z, T z)=0
$$

and hence $z=T z$. To prove the uniqueness of the fixed point, we assume there are two distinct fixed points of T, say z and w. So $d(z, w)>0$. So

$$
\begin{aligned}
0 & <d(z, w)=d(T z, T w) \\
& \leq \frac{1}{s} \Psi(s d(z, w))+L_{1} d(z, T z) \\
& =\frac{1}{s} \Psi(s d(z, w)) \\
& <d(z, w),
\end{aligned}
$$

which is a contradiction. Therefore T has a unique fixed point.
In this paper, we introduce the notion of a modification of generalized (s, L)-weak contraction and a modification of a generalized (ψ, L)-weak contraction mapping in b-metric spaces.

First of all, we prove fixed point result for two mapping S and T and some fixed point results for a mapping T. our results generalize Theorem 1.10.

2. The main result

We start our work by formulating the following definitions:
Definition 2.1. Let (X, d) be a b-metric space and $G, T, S: X \rightarrow X$ be three mappings such that $T X \subseteq G X$ and $S X \subseteq G X$. We call the pair (T, S) a modification of generalized (s, L)-weak contraction if there exists $L \geq 0$ such that

$$
\begin{align*}
d(T x, S y) \leq & \frac{1}{s} \max \{s d(G x, G y), s d(G x, T x), s d(G y, T y), \tag{2.1}\\
& \left.\frac{1}{2}(d(G x, S y)+d(T x, G x))\right\}+L \min \{d(G x, S y), d(T x, G y)\}
\end{align*}
$$

for all $x, y \in X$.

Definition 2.2. Let (X, d) be a b-metric space and $T, S: X \rightarrow X$ be two mappings. We call the pair (T, S) a modification of generalized (Ψ, L)-weak contraction if there exists $L \geq 0$ such that

$$
\begin{align*}
d(T x, S y) \leq & \frac{1}{s} \Psi(\max \{s d(G x, G y), s d(G x, T x), s d(G y, T y), \tag{2.2}\\
& \left.\left.\frac{1}{2}(d(G x, S y)+d(T x, G x))\right\}\right)+L \min \{d(G x, S y), d(T x, G y)\}
\end{align*}
$$

for all $x, y \in X$.
Theorem 2.3. Let (X, d) be a complete b-metric space and $G, T, S: X \rightarrow X$ be mappings such that the pair (T, S) is a modification of generalized $(\Psi, L)-$ weak contraction. If Ψ is a (c)-comparison function and $G X$ is a complete subspace of X, then G, T and S have a coincidence point.
Proof. Choose $G x_{0} \in X$. Put $G x_{1}=T x_{0}$. Again, put $G x_{2}=S x_{1}$. Continuing this process, we construct a sequence $\left(G x_{n}\right)$ in X such that $G x_{2 n+1}=T x_{2 n}$ and $G x_{2 n+2}=S x_{2 n+1}$. Suppose that $d\left(G x_{n}, G x_{n+1}\right)=0$ for some $n \in \mathbb{N}$. Without loss of generality, we assume $n=2 k$ for some $k \in \mathbb{N}$. Thus $d\left(G x_{2 k}, G x_{2 k+1}\right)=$ 0 . Now, by (2.2), we have

$$
\begin{aligned}
& d\left(G x_{2 k+1}, G x_{2 k+2}\right) \\
&= d\left(T x_{2 k}, S x_{2 k+1}\right) \\
& \leq \frac{1}{s} \Psi\left(\operatorname { m a x } \left\{s d\left(G x_{2 k}, G x_{2 k+1}\right), s d\left(G x_{2 k}, T x_{2 k}\right),\right.\right. \\
&\left.\quad s d\left(G x_{2 k+1}, S x_{2 k+1}\right), \frac{1}{2}\left[d\left(G x_{2 k}, S x_{2 k+1}\right)+d\left(T_{2 k}, G x_{2 k+1}\right)\right]\right\} \\
&+L \min \left\{d\left(T x_{2 k}, G x_{2 k+1}\right), d\left(G x_{2 k}, S x_{2 k+1}\right)\right\} \\
&= \frac{1}{s} \Psi\left(\operatorname { m a x } \left\{s d\left(G x_{2 k}, G x_{2 k+1}\right),\right.\right. \\
&\left.\frac{1}{2}\left[d\left(G x_{2 k}, G x_{2 k+2}\right)+d\left(G x_{2 k+1}, G x_{2 k+1}\right)\right]\right\} \\
&+L \min \left\{d\left(G x_{2 k+1}, G x_{2 k+1}\right), d\left(G x_{2 k}, G x_{2 k+2}\right)\right\} \\
& \leq \frac{1}{s} \Psi\left(\operatorname { m a x } \left\{s d\left(G x_{2 k}, G x_{2 k+1}\right),\right.\right. \\
&\left.\frac{s}{2}\left[d\left(G x_{2 k}, G x_{2 k+1}\right)+d\left(G x_{2 k+1}, G x_{2 k+2}\right)\right]\right\} \\
& \leq \frac{1}{s} \Psi\left(\operatorname { m a x } \left\{s d\left(G x_{2 k}, G x_{2 k+1}, s d\left(G x_{2 k+1}, G x_{2 k+2}\right)\right\} .\right.\right. \\
&= \frac{1}{s} \Psi\left(s d\left(G x_{2 k+1}, G x_{2 k+2}\right)\right) .
\end{aligned}
$$

Since $\Psi(t)<t$ for all $t>0$, we conclude that $d\left(G x_{2 k+1}, G x_{2 k+2}\right)=0$. By (b1) and ($b 2$) of the definition of b-metric spaces, we have $G x_{2 k+1}=G x_{2 k+2}$. So
$G x_{2 k}=G x_{2 k+1}=G x_{2 k+2}$. Therefore $G x_{2 k}=T x_{2 k}=S x_{2 k}$ and hence x_{k} is a coincidence point of G, T and S. Thus, we may assume that $d\left(G x_{n}, G x_{n+1}\right) \neq 0$ for all $n \in \mathbb{N}$. Given $n \in \mathbb{N}$. If n is even, then $n=2 t$ for some $t \in \mathbb{N}$. By (2.2), we have

$$
\begin{aligned}
d\left(G x_{2 t}, G x_{2 t+1}\right)= & d\left(G x_{2 t+1}, G x_{2 t}\right) \\
= & d\left(T x_{2 t}, S x_{2 t-1}\right) \\
\leq & \frac{1}{s} \Psi\left(\operatorname { m a x } \left\{s d\left(G x_{2 t}, G x_{2 t-1}\right), s d\left(G x_{2 t}, T x_{2 t}\right),\right.\right. \\
& s d\left(G x_{2 t-1}, S x_{2 t-1}\right), \\
& \left.\left.\frac{1}{2}\left[d\left(G x_{2 t}, S x_{2 t-1}\right)+d\left(T x_{2 t}, G x_{2 t-1}\right)\right]\right\}\right) \\
& +L \min \left\{d\left(G x_{2 t}, S x_{2 t-1}\right), d\left(T x_{2 t}, G x_{2 t-1}\right)\right\} \\
= & \frac{1}{s} \Psi\left(\operatorname { m a x } \left\{s d\left(G x_{2 t}, G x_{2 t-1}\right), s d\left(G x_{2 t}, G x_{2 t+1}\right),\right.\right. \\
& \left.\left.\frac{1}{2}\left[d\left(G x_{2 t}, G x_{2 t}\right)+d\left(G x_{2 t+1}, G x_{2 t-1}\right)\right]\right\}\right) \\
& +L \min \left\{d\left(G x_{2 t}, G x_{2 t}\right), d\left(G x_{2 t+1}, G x_{2 t-1}\right)\right\} .
\end{aligned}
$$

Using (b4) of the definition of b-metric spaces, we reach to

$$
\begin{align*}
d\left(G x_{2 t}, G x_{2 t+1}\right) \leq & \frac{1}{s} \Psi\left(\operatorname { m a x } \left\{s d\left(G x_{2 t}, G x_{2 t-1}\right), s d\left(G x_{2 t}, G x_{2 t+1}\right),\right.\right. \\
& \left.\left.\frac{s}{2}\left[d\left(G x_{2 t-1}, G x_{2 t}\right)+d\left(G x_{2 t}, G x_{2 t+1}\right)\right]\right\}\right) \\
\leq & \frac{1}{s} \Psi\left(\max \left\{s d\left(G x_{2 t}, G x_{2 t-1}\right), s d\left(G x_{2 t}, G x_{2 t+1}\right)\right\} .\right. \tag{2.3}
\end{align*}
$$

If $\max \left\{s d\left(G x_{2 t}, G x_{2 t-1}\right), \operatorname{sd}\left(G x_{2 t}, G x_{2 t+1}\right)\right\}=\operatorname{sd}\left(G x_{2 t}, G x_{2 t+1}\right)$, then (2.3) yields a contradiction. Thus,

$$
\max \left\{s d\left(G x_{2 t}, G x_{2 t-1}\right), \operatorname{sd}\left(G x_{2 t}, G x_{2 t+1}\right)\right\}=\operatorname{sd}\left(G x_{2 t}, G x_{2 t-1}\right)
$$

and hence

$$
\begin{equation*}
d\left(G x_{2 t}, G x_{2 t+1}\right) \leq \frac{1}{s} \Psi\left(s d\left(G x_{2 t}, G x_{2 t-1}\right)\right) . \tag{2.4}
\end{equation*}
$$

If n is odd, then $n=2 t+1$ for some $t \in \mathbb{N} \cup\{0\}$. By similar arguments as above, we can show that

$$
\begin{equation*}
d\left(G x_{2 t+1}, G x_{2 t+2}\right) \leq \frac{1}{s} \Psi\left(s d\left(G x_{2 t}, G x_{2 t+1}\right)\right) \tag{2.5}
\end{equation*}
$$

By (2.4) and (2.5), we have

$$
\begin{equation*}
d\left(G x_{n}, G x_{n+1}\right) \leq \frac{1}{s} \Psi\left(s d\left(G x_{n-1}, G x_{n}\right)\right) . \tag{2.6}
\end{equation*}
$$

By repeating (2.6) in n-times, we get $d\left(G x_{n}, G x_{n+1}\right) \leq \frac{1}{s} \Psi^{n}\left(s d\left(G x_{0}, G x_{1}\right)\right)$. For $n, m \in \mathbb{N}$ with $m>n$, we have

$$
\begin{aligned}
d\left(G x_{n}, G x_{m}\right) & \leq \sum_{i=n}^{m-1} s^{i} d\left(G x_{i}, G x_{i+1}\right) \\
& \leq \sum_{i=n}^{m-1} s^{i} \psi^{i}\left(s d\left(G x_{0}, G x_{1}\right)\right) \\
& \leq \sum_{i=n}^{\infty} s^{i} \psi^{i}\left(s d\left(G x_{0}, G x_{1}\right)\right) .
\end{aligned}
$$

Since Ψ is (c)-comparison, we have $\sum_{i=n}^{\infty} s^{i} \Phi^{i}\left(d\left(G x_{0}, G x_{1}\right)\right)$ is convergent and hence $\lim _{n \rightarrow+\infty} \sum_{i=n}^{\infty} s^{i} \Phi^{i}\left(d\left(G x_{0}, G x_{1}\right)\right)=0$. So, $\lim _{n, m \rightarrow+\infty} d\left(G x_{n}, G x_{m}\right)=0$. Thus $\left\{G x_{n}\right\}$ is a Cauchy sequence in $G X$. Since $G X$ is complete, there exists $z \in G X$ such that $G x_{n} \rightarrow G z$ with $d(G z, G z)=0$. So,

$$
\begin{equation*}
\lim _{n, m \rightarrow+\infty} d\left(G x_{n}, G x_{m}\right)=\lim _{n \rightarrow \infty} d\left(G x_{n}, G z\right)=d(G z, G z)=0 . \tag{2.7}
\end{equation*}
$$

Now, we prove that $S z=T z$. Since $d\left(G x_{2 n+1}, G z\right) \rightarrow d(G z, G z)=0$ and $d\left(G x_{2 n+2}, G z\right) \rightarrow d(G z, G z)=0$, by Remark 1.9, we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d\left(G x_{2 n+1}, S z\right)=d(G z, S z) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d\left(G x_{2 n+2}, S z\right)=d(G z, T z) . \tag{2.9}
\end{equation*}
$$

By using (2.2), we have

$$
\begin{aligned}
d\left(G x_{2 n+1}, S z\right)= & d\left(T x_{2 n}, S z\right) \\
\leq & \frac{1}{s} \Psi\left(\operatorname { m a x } \left\{s d\left(G x_{2 n}, G z\right), s d\left(G x_{2 n}, T x_{2 n}\right), s d(G z, S z)\right.\right. \\
& \left.\left.\frac{1}{2}\left[d\left(T x_{2 n}, G z\right)+d\left(G x_{2 n}, S z\right)\right]\right\}\right) \\
& +L \min \left\{d\left(T x_{2 n}, G z\right), d\left(G x_{2 n}, S z\right)\right\} \\
\leq & \frac{1}{s} \psi\left(\operatorname { m a x } \left\{s d\left(G x_{2 n}, G z\right), s d\left(G x_{2 n}, G x_{2 n+1}\right), s d(G z, S z),\right.\right. \\
& \left.\left.\frac{1}{2}\left[d\left(G x_{2 n+1}, G z\right)+d\left(G x_{2 n}, S z\right)\right]\right\}\right) \\
& +L \min \left\{d\left(G x_{2 n+1}, G z\right), d\left(G x_{2 n}, S z\right)\right\} .
\end{aligned}
$$

On letting $n \rightarrow+\infty$ in the above inequality and using (2.7) and (2.8), we get that $d(G z, S z) \leq \frac{1}{s} \psi(s d(G z, S z))$. Since $\psi(t)<t$ for all $t>0$, we conclude
that $d(G z, S z)=0$. By using (b1) and (b2) of the definition of b-metric spaces, we get that $S z=G z$. By similar arguments as above, we may show that $T z=G z$. so z is a coincidence point of G, T and S

Theorem 2.4. Let (X, d) be a complete $b-m e t r i c ~ s p a c e ~ a n d ~ T, S: X \rightarrow X$ be two mappings such that

$$
\begin{align*}
d(T x, S y) \leq & \frac{1}{s} \Phi\left(\max \left\{s d(x, y), s d(x, T x), s d(y, S y), \frac{1}{2}[d(T x, y)+d(x, S y)]\right\}\right) \\
& +L \min \{d(x, T x), d(x, S y), d(T x, y)\} \tag{2.10}
\end{align*}
$$

for all $x, y \in X$. If Ψ is a (c)-comparison function, then the common fixed point of T and S is unique.

Proof. By taking $G=i$ the identity map on X, then Theorem 2.3 implies that i, T have a coincidence point; that is, there is $z \in X$ such that $z=i z=T z=$ $S z$. So z is a common fixed point of T and S. To prove the uniqueness of the common fixed point of T and S, we let u, v be two common fixed points of T and S. Then $T u=S u=u$ and $T v=S v=v$.

Now, we will show that $u=v$. By (2.10), we have

$$
\begin{aligned}
d(u, v)= & d(T u, S v) \\
\leq & \frac{1}{s} \psi\left(\max \left\{s d(u, v), s d(u, T u), s d(v, S v), \frac{1}{2}[d(T u, v)+d(v, T u)]\right\}\right) \\
& +L \min \{d(u, T u), d(T u, v), d(v, T u)\} \\
\leq & \frac{1}{s} \psi\left(\max \left\{s d(u, v), s d(u, T u), s d(v, v), \frac{1}{2}[d(T u, v)+d(v, u)]\right\}\right) \\
& +L \min \{d(u, u), d(u, v), d(v, u)\} \\
= & \frac{1}{s} \psi(s d(u, v)) .
\end{aligned}
$$

Since $\psi(t)<t$ for all $t>0$, we conclude that $d(u, v)=0$. By (b1) and (b2) of the definition of b-metric spaces, we get that $u=v$.

Corollary 2.5. Let (X, d) be a complete b-metric space and $T: X \rightarrow X$ be a mapping such that

$$
\begin{aligned}
d(T x, T y) \leq & \frac{1}{s} \Psi\left(\max \left\{s d(x, y), s d(x, T x), s d(y, T y), \frac{1}{2}[d(T x, y)+d(x, S y)]\right\}\right) \\
& +L \min \{d(x, T x), d(x, T y), d(T x, y)\}
\end{aligned}
$$

for all $x, y \in X$. If Ψ is a (c)-comparison function, then T has a unique fixed point.

Corollary 2.6. Let (X, d) be a b-metric space and $T, S: X \rightarrow X$ be two mappings such that

$$
\begin{aligned}
d(T x, T y) \leq & \frac{1}{s} \Psi(\max \{s d(S x, S y), s d(S x, T x), s d(S y, T y), \\
& \left.\left.\frac{1}{2}[d(T x, S y)+d(S x, T y)]\right\}\right) \\
& +L \min \{d(S x, T y), d(S y, T x)\}
\end{aligned}
$$

for all $x, y \in X$. Also, suppose that
(1) $T X \subseteq S X$, and
(2) $S X$ is a complete subspace of the b-metric space X.

If Ψ is a (c)-comparison function, then T and S have a unique coincidence point.

Corollary 2.7. Let (X, d) be a complete b-metric space and $T: X \rightarrow X$ be a mapping. Suppose there exist two non-negative numbers k and l such that

$$
\begin{aligned}
d(T x, T y) \leq & k \max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}[d(T x, y)+d(x, T y)]\right\} \\
& +L \min \{d(x, T x), d(x, T y), d(T x, y)\}
\end{aligned}
$$

for all $x, y \in X$. If $k \in[0,1)$, then T has a unique fixed point.
Corollary 2.8. Let (X, d) be a b-metric space and $T, S: X \rightarrow X$ be two mapping. Suppose there exist two non-negative numbers k and l such that

$$
\begin{aligned}
& \qquad \begin{array}{l}
d(T x, T y) \\
\leq \\
\quad k \max \left\{d(S x, S y), d(S x, T x), d(S y, T y), \frac{1}{2}[d(T x, S y)+d(S x, T y)]\right\} \\
\quad+L \min \{d(S x, T y), d(S y, T x)\}
\end{array} \\
& \text { for all } x, y \in X . \text { Also, suppose that }
\end{aligned}
$$

(1) $T X \subseteq S X$, and
(2) $S X$ is a complete subspace of the b-metric space X.

If $k \in[0,1)$, then T and S have a coincidence point.
Corollary 2.9. Let (X, d) be a b-metric space and $T, S: X \rightarrow X$ be two mappings. Suppose that there exist a (c)-comparison function Ψ and $L \geq 0$ such that

$$
\begin{aligned}
d(T x, T y) \leq & \frac{1}{s} \Psi(\max \{s d(S x, S y), s d(S x, T x), s d(S y, T y), \\
& \left.\left.\frac{1}{2}[d(T x, S y)+d(S x, T y)]\right\}\right) \\
& +\min \{d(T x, S x), d(S x, T y), d(S y, T x)\}
\end{aligned}
$$

for all $x, y \in X$. Also, suppose that
(1) $T X \subseteq S X$, and
(2) $S X$ is a complete subspace of the b-metric space X.

Then the point of coincidence of T and S is unique; that is, if $T u=S u$ and $T v=S v$, then $T u=T v=S v=S u$.

The (c)-comparison function in Theorems 2.3 and 2.4 can be replaced by a comparison function if we formulated the contractive condition to a suitable form. For this instance, we have the following result

Theorem 2.10. Let (X, d) be a complete b-metric space and $G, T: X \rightarrow X$ be mappings such that $T X \subseteq G X$ and

$$
\begin{align*}
d(T x, T y) \leq & \frac{1}{s} \Psi(\max \{s d(G x, G y), s d(G x, T x), s d(G y, T y)\}) \\
& +L \min \{d(G x, T x), d(G x, T y), d(G y, T x)\} \tag{2.11}
\end{align*}
$$

for all $x, y \in X$. If Ψ is a comparison function and $G X$ is a complete subspace of X, then G and T have a coincidence point.

Proof. Choose $G x_{0} \in X$. Put $G x_{1}=T x_{0}$. Again, put $G x_{2}=T x_{1}$. Continuing the same process, we can construct a sequence $\left\{G x_{n}\right\}$ in X such that $G x_{n+1}=$ $T x_{n}$. If $d\left(G x_{k}, G x_{k+1}\right)=0$ for some $k \in \mathbb{N}$, then by the definition of b-metric spaces, we have $G x_{k}=G x_{k+1}=T x_{k}$, that is, $G x_{k}$ is a coincidence point of G and T. Thus, we assume that $d\left(G x_{n}, G x_{n+1}\right) \neq 0$ for all $n \in \mathbb{N}$. By (2.11), we have

$$
\begin{aligned}
d & \left(G x_{n}, G x_{n+1}\right) \\
= & d\left(T x_{n-1}, T x_{n}\right) \\
\leq & \frac{1}{s} \Psi\left(\max \left\{s d\left(G x_{n-1}, G x_{n}\right), s d\left(G x_{n-1}, T x_{n-1}\right), s d\left(G x_{n}, T x_{n}\right)\right\}\right) \\
& +L \min \left\{d\left(G x_{n-1}, T x_{n}\right), d\left(G x_{n-1}, T x_{n}\right), d\left(G x_{n}, T x_{n-1}\right)\right\} \\
= & \frac{1}{s} \Psi\left(\max \left\{s d\left(G x_{n-1}, G x_{n}\right), s d\left(G x_{n}, G x_{n+1}\right)\right\}\right) \\
& +L \min \left\{d\left(G x_{n-1}, T x_{n+1}\right), d\left(G x_{n}, G x_{n}\right)\right\} \\
= & \frac{1}{s} \Psi\left(\max \left\{s d\left(G x_{n-1}, G x_{n}\right), s d\left(G x_{n}, G x_{n+1}\right)\right\}\right)
\end{aligned}
$$

If

$$
\max \left\{s d\left(G x_{n-1}, G x_{n}\right), s d\left(G x_{n}, G x_{n+1}\right)\right\}=\operatorname{sd}\left(G x_{n}, G x_{n+1}\right),
$$

then

$$
d\left(G x_{n}, G x_{n+1}\right) \leq \frac{1}{s} \Psi\left(s d\left(G x_{n}, G x_{n+1}\right)\right)<d\left(G x_{n}, G x_{n+1}\right),
$$

a contradiction. Thus,

$$
\max \left\{s d\left(G x_{n-1}, G x_{n}\right), \operatorname{sd}\left(G x_{n}, G x_{n+1}\right)\right\}=\operatorname{sd}\left(G x_{n-1}, G x_{n}\right)
$$

and hence

$$
\begin{equation*}
d\left(G x_{n}, G x_{n+1}\right) \leq \frac{1}{s} \Psi\left(s d\left(G x_{n-1}, G x_{n}\right)\right) \text { for all } n \in \mathbb{N} \tag{2.12}
\end{equation*}
$$

Repeating (2.12) in n-times, we get that

$$
d\left(G x_{n}, G x_{n+1}\right) \leq \frac{1}{s} \Psi^{n}\left(s d\left(G x_{0}, G x_{1}\right)\right)
$$

Now, we will prove that $\left\{G x_{n}\right\}$ is a Cauchy sequence in $G X$. For this, given $\epsilon>0$, since $\frac{1}{(2+L)}(\epsilon-\Phi(\epsilon))>0$ and $\lim _{n \rightarrow+\infty} \Phi^{n}\left(s d\left(G x_{0}, G x_{1}\right)\right)=0$, there exists $k \in \mathbb{N}$ such that $d\left(G x_{n}, G x_{n+1}\right)<\frac{1}{s(2+L)}(\epsilon-\Phi(\epsilon))$ for all $n \geq k$. Now, given $m, n \in \mathbb{N}$ with $m>n$. Claim: $d\left(G x_{n}, G x_{m}\right)<\epsilon$ for all $m>n>k$. We prove our claim by induction on m. Since $k+1>k$, we have

$$
d\left(G x_{k}, G x_{k+1}\right) \leq \frac{1}{s(2+L)}(\epsilon-\Phi(\epsilon))<\epsilon .
$$

The last inequality proves our claim for $m=k+1$. Assume that our claim holds for $m=k$.

Now, we prove our claim for $m=k+1$, we have

$$
\begin{align*}
d\left(G x_{n}, G x_{k+1}\right) & \leq s\left[d\left(G x_{n}, G x_{n+1}\right)+d\left(G x_{n+1}, G x_{k+1}\right)\right] \\
& =s\left[d\left(G x_{n}, G x_{n+1}\right)+d\left(T x_{n}, T x_{k}\right)\right] . \tag{2.13}
\end{align*}
$$

By (2.11), we have

$$
\begin{aligned}
d\left(T x_{n}, T x_{k}\right) \leq & \frac{1}{s} \Psi\left(\max \left\{s d\left(G x_{n}, G x_{k}\right), s d\left(G x_{n}, T x_{n}\right), s d\left(G x_{k}, T x_{k}\right)\right\}\right) \\
& +L \min \left\{d\left(G x_{n}, T x_{n}\right), d\left(G x_{n}, T x_{k}\right), d\left(G x_{k}, T x_{n}\right)\right\} \\
= & \frac{1}{s} \Psi\left(\max \left\{s d\left(G x_{n}, G x_{k}\right), s d\left(G x_{n}, G x_{n+1}\right), s d\left(G x_{k}, G x_{k+1}\right)\right\}\right) \\
& +L \min \left\{d\left(G x_{n}, G x_{n+1}\right), d\left(G x_{n}, G x_{k+1}\right), d\left(G x_{k}, G x_{n+1}\right)\right\} \\
\leq & \frac{1}{s} \Psi\left(\max \left\{s d\left(G x_{n}, G x_{k}\right), s d\left(G x_{n}, G x_{n+1}\right), s d\left(G x_{k}, G x_{k+1}\right)\right\}\right) \\
& +L d\left(G x_{n}, G x_{n+1}\right) .
\end{aligned}
$$

If

$$
\max \left\{s d\left(G x_{n}, G x_{k}\right), s d\left(G x_{n}, G x_{n+1}\right), s d\left(G x_{k}, G x_{k+1}\right)\right\}=\operatorname{sd}\left(G x_{n}, G x_{k}\right)
$$

then (2.13) implies that

$$
\begin{aligned}
d\left(G x_{n}, G x_{k+1}\right) & \leq s\left[d\left(G x_{n}, G x_{n+1}\right)+\frac{1}{s} \Psi\left(s d\left(G x_{n}, G x_{k}\right)\right)+L d\left(G x_{n}, G x_{n+1}\right)\right] \\
& <\left[\frac{1+L}{s(2+L)}(\epsilon-\Phi(\epsilon))+\frac{1}{s} \Phi(\epsilon)\right] s \\
& <\epsilon .
\end{aligned}
$$

If

$$
\max \left\{s d\left(G x_{n}, G x_{k}\right), s d\left(G x_{n}, G x_{n+1}\right), s d\left(G x_{k}, G x_{k+1}\right)\right\}=\operatorname{sd}\left(G x_{n}, G x_{n+1}\right),
$$

then (2.13) implies that

$$
\begin{aligned}
& d\left(G x_{n}, G x_{k+1}\right) \\
& \leq s\left[d\left(G x_{n}, G x_{n+1}\right)+\frac{1}{s} \Psi\left(s d\left(G x_{n}, G x_{n+1}\right)\right)+L d\left(G x_{n}, G x_{n+1}\right)\right] \\
& <(2+L) s d\left(G x_{n}, G x_{n+1}\right) \\
& <\frac{\epsilon-\Phi(\epsilon)}{\epsilon} \\
& <\epsilon .
\end{aligned}
$$

If

$$
\max \left\{s d\left(G x_{n}, G x_{k}\right), s d\left(G x_{n}, G x_{n+1}\right), s d\left(G x_{k}, G x_{k+1}\right)\right\}=s d\left(G x_{k}, G x_{k+1}\right),
$$

then (2.13) implies that

$$
\begin{aligned}
& d\left(G x_{n}, G x_{k+1}\right) \\
& \leq s\left[d\left(G x_{n}, G x_{n+1}\right)+\frac{1}{s} \Psi\left(s d\left(G x_{k}, G x_{k+1}\right)\right)+L d\left(G x_{n}, G x_{n+1}\right)\right] \\
& <(s+L) d\left(G x_{n}, G x_{n+1}\right)+s d\left(G x_{k}, G x_{k+1}\right) \\
& <\frac{s+L}{s(2+L)}(\epsilon-\Phi(\epsilon))+\frac{s}{s(2+L)}(\epsilon-\Phi(\epsilon)) \\
& <\epsilon
\end{aligned}
$$

Thus $\left\{G x_{n}\right\}$ is a Cauchy sequence in X. Since $G X$ is complete, $\left\{G x_{n}\right\}$ converges, with respect to τ_{p}, to a point $G z$ for some $z \in X$ such that

$$
\begin{equation*}
\lim _{n, m \rightarrow+\infty} d\left(G x_{n}, G x_{m}\right)=\lim _{n \rightarrow+\infty} d\left(G x_{n}, G z\right)=d(G z, G z)=0 . \tag{2.14}
\end{equation*}
$$

Now, assume that $d(G z, T z)>0$. By using (b4) of the definition of b-metric spaces and (2.11), we have

$$
\begin{align*}
d & (G z, T z) \\
\leq & s\left[d\left(G z, G x_{n+1}\right)+d\left(G x_{n+1}, T z\right)\right] \\
= & s\left[d\left(G z, G x_{n+1}\right)+d\left(T x_{n}, T z\right)\right] \\
\leq & s\left[d\left(G z, G x_{n+1}\right)+\frac{1}{s} \Psi\left(\max \left\{s d\left(G x_{n}, G z\right), s d\left(G x_{n}, T x_{n}\right), s d(G z, T z)\right\}\right)\right. \\
& \left.+L \min \left\{d\left(G x_{n}, T x_{n}\right), d\left(G x_{n}, T z\right), d\left(G x_{n}, T z\right)\right\}\right] \\
= & s\left[d\left(z, G x_{n+1}\right)+\frac{1}{s} \Psi\left(\max \left\{s d\left(G x_{n}, z\right), s d\left(G x_{n}, G x_{n+1}\right), s d(z, T z)\right\}\right)\right. \\
& \left.+L \min \left\{d\left(G x_{n}, G x_{n+1}\right), d\left(G x_{n}, T z\right), d\left(G x_{n+1}, S z\right)\right\}\right] . \tag{2.15}
\end{align*}
$$

Since

$$
\lim _{n, m \rightarrow+\infty} d\left(G x_{n}, G x_{n+1}\right)=\lim _{n \rightarrow+\infty} d\left(G x_{n}, G z\right)=0
$$

and $d(G z, T z)>0$, we can choose $n_{0} \in \mathbb{N}$ such that

$$
\max \left\{s d\left(G x_{n}, G z\right), s d\left(G x_{n}, G x_{n+1}\right), s d(G z, T z)\right\}=s d(G z, T z)
$$

for all $n \geq n_{0}$. Thus (2.15) becomes

$$
\begin{aligned}
d(G z, T z) \leq & s\left[d\left(G z, G x_{n+1}\right)+\frac{1}{s} \Psi(s d(G z, T z))\right. \\
& \left.+L \min \left\{d\left(G x_{n}, G x_{n+1}\right), d\left(G x_{n}, T z\right), d\left(G x_{n+1}, T z\right)\right\}\right]
\end{aligned}
$$

for all $n \geq n_{0}$. On letting $n \rightarrow+\infty$ in the above inequality and using (2.14), we get that

$$
d(G z, T z) \leq \frac{1}{s} \Psi(s d(G z, T z))<d(G z, T z),
$$

a contradiction. Thus $d(z, T z)=0$. By using (b1) and (b2) of the definition of a b-metric space, we get that $G z=T z$, that is, z is a coincidence point of G and T.

Corollary 2.11. Let (X, d) be a b-metric space and $T: X \rightarrow X$ be a mapping. Suppose there exist a comparison function Ψ and $L \geq 0$ such that

$$
\begin{aligned}
d(T x, T y) \leq & \frac{1}{s} \Psi(\max \{s d(x, y), s d(x, T x), s d(y, T y)\}) \\
& +L \min \{d(x, T x), d(x, T y), d(y, T x)\}
\end{aligned}
$$

for all $x, y \in X$. Then T has unique fixed point.
Proof. By taking $i=G$, the identity function on X. Then from Theorem 2.10, we conclude that i and T have a coincidence point $z \in X$. So $z=i x=T x$. So x is a fixed point of T. One can easily show that from the contractive condition, the fixed point of T is unique.

3. Example

Example 3.1. Let $X=[0,+\infty)$. Consider the complete b-metric space d : $X \times X \rightarrow[0,+\infty), d(x, y)=(x-y)^{2}$ with constant $s=2$. Define the mappings $G, T, S: X \rightarrow X$ by $G x=x, T x=\frac{1}{3} x$ and $S x=\frac{1}{6} x$, and define $\Psi:[0,+\infty) \rightarrow$ $[0,+\infty)$ by $\Psi(t)=\frac{1}{4}$. Then
(1) Ψ is a continuous (c)-comparison function.
(2) T, S and Ψ satisfy the following inequality:

$$
\begin{aligned}
d(T x, S y) \leq & \frac{1}{s} \Psi(\max \{s d(G x, G y), s d(G x, T x), s d(G y, S y), \\
& \left.\left.\frac{1}{2}[d(T x, G y)+d(G x, S y)]\right\}\right) \\
+ & L \min \{d(G x, T x), d(G x, S y), d(T x, G y)\} .
\end{aligned}
$$

In fact, it is clear that Ψ is a nondecreasing continuous function. Now, let $t \in[0 .+\infty)$. Then,

$$
\Psi^{n}(s t)=\Psi^{n}(2 t)=\frac{1}{4^{n}}(2 t) .
$$

Thus

$$
\begin{aligned}
\sum_{n=0}^{\infty} s^{n} \Psi^{n}(s t) & =\sum_{n=0}^{\infty} \frac{2^{n}}{4^{n}}(2 t) \\
& =2 t \sum_{n=0}^{\infty} \frac{1}{2^{n}} \\
& <+\infty
\end{aligned}
$$

So Ψ is a (c)-comparison function.
To show (2), let $x, y \in X$. Then

$$
d(T x, S y)=d\left(\frac{1}{3} x, \frac{1}{6} y\right)=\left(\frac{1}{3} x-\frac{1}{6} y\right)^{2}=\frac{1}{9}\left(x-\frac{1}{2} y\right)^{2} .
$$

Now, we have 3 cases:
Case I: $x=\frac{1}{2} y$. Here, we have

$$
\begin{aligned}
d(T x, S y)=0 \leq & \frac{1}{s} \Psi(\max \{s d(G x, G y), s d(G x, T x), s d(G y, S y), \\
& \left.\left.\frac{1}{2}[d(T x, G y)+d(G x, S y)]\right\}\right) \\
& +L \min \{d(G x, T x), d(G x, S y), d(T x, G y)\}
\end{aligned}
$$

Case II: $x>\frac{1}{2} y$. Here, we have

$$
\begin{aligned}
d(T x, S y)= & \frac{1}{9}\left(x-\frac{1}{2} y\right)^{2} \leq \frac{x^{2}}{6} \\
= & \frac{1}{2}(2)\left(\frac{2}{3} x\right)^{2}\left(\frac{1}{4}\right) \\
= & \frac{1}{2} \Psi\left(2\left(x-\frac{1}{3} x\right)^{2}\right) \\
= & \frac{1}{2} \Psi\left(2 d\left(x, \frac{1}{3} x\right)\right) \\
= & \frac{1}{s} \Psi(s d(G x, T x)) \\
\leq & \frac{1}{s} \Psi(\max \{s d(G x, G y), s d(G x, T x), s d(G y, S y), \\
& \left.\left.\frac{1}{2}[d(T x, G y)+d(G x, S y)]\right)\right\} \\
& +L \min \{d(G x, T x), d(G x, S y), d(T x, G y)\}
\end{aligned}
$$

Case III: $x<\frac{1}{2} y$. Here, we have

$$
\begin{aligned}
d(T x, S y)= & \frac{1}{9}\left(x-\frac{1}{2} y\right)^{2} \leq \frac{y^{2}}{36} \\
\leq & \left(\frac{25}{36}\right)\left(\frac{y^{2}}{4}\right) \\
= & \frac{1}{2} \Psi\left(2\left(\frac{25}{36}\right) y^{2}\right) \\
= & \frac{1}{2} \Psi\left(2\left(y-\frac{1}{6} y\right)^{2}\right) \\
= & \frac{1}{2} \Psi\left(2 d\left(y, \frac{1}{6} y\right)\right) \\
= & \frac{1}{s} \Psi(s d(G y, S x)) \\
= & \frac{1}{s} \Psi(\max \{s d(G x, G y), s d(G x, T x), s d(G y, S y), \\
& \left.\left.\frac{1}{2}[d(T x, G y)+d(G x, S y)]\right\}\right) \\
& +L \min \{d(G x, T x), d(G x, S y), d(T x, G y)\} .
\end{aligned}
$$

Hence we know that G, T, S and Ψ satisfy all hypotheses of Theorem 2.4. So T and S have a unique common fixed point.

References

[1] M. Abbas, W. Shatanawi, S. Farooq and Z.D. Mitrovic, On a JH-operators pair of type (A) with applications to integral equations, J. Fixed Point Theory Appl., 22 (2020), Article number 72.
[2] K. Abodayeh, T. Qawasmeh, W. Shatanawi and A. Tallafha, E_{ϕ}-contraction and some fixed point results via modified -distance mappings in the frame of complete quasi metric spaces and applications, Inter. J. Elect. Comput. Eng., 10 (2020), 3839-3853.
[3] A. Aghajani, M. Abbas and J.R. Roshan, common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64 (2014), 941960.
[4] E. Ameer, H. Aydi, H.A. Hammad, W. Shatanawi and N. Mlaiki, On (ϕ, ψ)-metric spaces with applications, Symmetry, 12 (2020), Article number 1459.
[5] H. Aydi, W. Shatanawi, M, Postolache, Z. Mustafa and N. Tahat, Theorems for Boyd-Wong-type contractions in ordered metric spaces, Abst. Appl. Anal., 2012 (2012), Article number 359054.
[6] I.A. Bakhtin, The contraction mapping principle in almost metric spaces., Funct. Anal., 30 (1989), 26-37.
[7] A. Bataihah, W. Shatanawi, T. Qawasmeh and R. Hatamleh, On H-Simulation functions and fixed point results in the setting of wt-distance mappings with application on matrix equations, Mathematics, 8(5) (2020), Article number 837.
[8] A. Bataihah, W. Shatanawi and A. Tallafha, Fixed point results with simulation functions, Nonlinear Funct. Anal. Appl., 25(1) (2020), 13-23.
[9] A. Bataihah, A. Tallafha and W. Shatanawi, Fixed point results with Ω-distance by utilizing simulation functions, Italian J. Pure and Appl. Math., 43 (2020), 185-196.
[10] M. Boriceanu, Fixed point theory for multivalued generalized contractions on a set with two b-metric, Creative Math Inf., 17 (2008), 326-332.
[11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra. 1 (1993), 5-11.
[12] H. Huang and SH. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 2013:112. (2013).
[13] U. Kadak, On the classical sets of sequences with fuzzy b-metric, Gen. Math. Notes. 23(1) (2014), 89-108.
[14] T. Kamran, M. Samreen and Q. Ain. A Generalization of b-Metric space and some fixed point theorems, Acta Math. Inform. Univ. Ostra. 5(19) (2017).
[15] A. Khan, T. Abdeljawad, W. Shatanawi and H. Khan, Fixed point theorems for quadruple self-mappings satisfying integral type inequalities, Filomat, 34(3) (2020), 905-917 https://doi.org/10.2298/FIL2003905K
[16] A. Mukheimer, N. Mlaiki, K. Abodayeh and W.Shatanawi, New theorems on extended b-metric spaces under new contractions, Nonlinear Anal, Model. Control, 24(6) (2019), 870-883.
[17] K. Kukic, W. Shatanawi and M.G. Filipovic, Khan and Ciric contraction princples in almost b-metric space, U.P.B. Sci. Bull., Series A, 82(1) (2020).
[18] Z. Mustafa, J.R. Roshan and V. Parvaneh, Coupled coincidence point results for (ψ, ϕ)-weakly counteractive mappings in partially ordered G_{b}-metric spaces, Fixed Point Theory Appl., (2013), 2013:206.
[19] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, Analele Universitatii de Vest, Timisoara Seria Mate. Inform., XLVIII., 3 (2010), 125-137.
[20] M. Pacurar, A fixed point results for ϕ-contraction on b-metric spaces without the boundedness assumption, Fasciculi Math., 43 (2010), 127-136.
[21] V. Parvaneh, J.R. Roshan and S. Radenovic, Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed point Theory Appl., (2013), 2013:130.
[22] H. Qawaqneh, M. S. M. Noorani and W. Shatanawi, Fixed point theorems for (α, k, θ)-contractive multi-valued mapping in b-metric space and applications, Int. J. Math. Comput. Sci., 14(1) (2019), 263-283.
[23] H. Qawaqneh, M.S.M. Noorani, S. Shatanawi, H. Aydi and H. Alsamir, Fixed point results for multi-valued contractions in b-metric spaces and an application, Mathematics, 7 (2019), Article number 132.
[24] T. Qawasmeh, A. Tallafha and W. Shatanawi, Fixed and common fixed point theorems through modified ω-distance mappings, Nonlinear Funct. Anal. Appl., 24 (2019), 221239.
[25] T. Qawasmeh, A. Tallafha and W. Shatanawi, Fixed point theorems through modified w-distance and application to nontrivial equations, Axioms, 8 (2019), Article Number 57.
[26] K.P.R. Rao, W. Shatanawi, G.N.V. Kishore, K. Abodayeh and D.R. Prasad, Existeness and uniqeness of Suzuki type results in S_{b} metric spaces with applications to Integral equations, Nonlinear Funct. Anal. Appl., 23 (2018), 225-245.
[27] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized $(\psi, \phi)_{s}$-contractive mappings in ordered bmetric spaces, Fixed Point Theory Appl., (2013), 2013:159, 123.
[28] S. Sedghi, N. Shobkolaei, J. Rezaei Roshan, and W. Shatanawi, Coupled fixed point theorems in G_{b}-metric spaces, Matematicki Vesnik, 66(2) (2014), 190-201.
[29] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinear contractions in b-metric spaces, J. Math. Anal., 7(4) (2016), 1-12.
[30] W. Shatanawi, On w-compatible mappings and common coupled coincidence point in cone metric spaces, Appl. Math. Letters, 25 (2012), 925-931.
[31] W. Shatanawi, Some fixed point results for a generalized weak contraction mappings in orbitally metric spaces, Chaos, Solitons and Fractals, 45 (2012), 520-526.
[32] W. Shatanawi, K. Abodayeh and A. Mukheimer, Some fixed point theorems in extended bmetric spaces, U.P.B. Sci. Bull., 80 (218), 71-78.
[33] W. Shatanawi, A. Bataihah and A. Tallafha, Four-step iteration scheme to approximate fixed point for weak contractions, Comput. Materials Continua CMC, 64 (2020), 14911504.
[34] W. Shatanawi, E. Karapnar and H. Aydi, Coupled coincidence points in partially ordered cone metric spaces with a c-distance, J. Appl. Math., 2012 (2012), Article number 312078.
[35] W. Shatanawi, Z. Mustafa and N. Tahat, Some coincidence point theorems for nonlinear contraction in ordered metric spaces, Fixed Point Theory Appl., 2011 (2011), Article number 68.
[36] W. Shatanawi and A. Pitea, Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction, Fixed Point Theory App., 2013(11) (2013), DOI: 10.1186/1687-1812-2013-275.
[37] W. Shatanawi, A. Pitea and R. Lazovi, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl., 2013(120) (2013).
[38] W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory Appl., 2013 (2013), Article number 271.
[39] W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory Appl., 2013 (2013), Article number 271.
[40] W. Shatanawi, V.C. Rajic, S.C. Radenovic and A. Al-Rawashdeh, Mizoguchi-Takahashitype theorems in tvs-cone metric spaces, Fixed Point Theory and Appl., 2012 (2012), Article number 106.

[^0]: ${ }^{0}$ Received September 15, 2020. Revised February 4, 2021. Accepted February 6, 2021.
 ${ }^{0} 2010$ Mathematics Subject Classification: $54 \mathrm{H} 25,47 \mathrm{H} 10,34 \mathrm{~B} 15$.
 ${ }^{0}$ Keywords: b-metric space, (Ψ, L)-weak contraction, comparison function, (c)-comparison function.
 ${ }^{0}$ Corresponding author: Abed Al-Rahman M. Malkawi(math.malkawi@gmail.com).

