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NONLINEAR CONTRACTIONS IN PARTIALLY ORDERED

QUASI b-METRIC SPACES

Masood Hussain Shah and Nawab Hussain

Abstract. Using the concept of a g-monotone mapping we prove some
common fixed point theorems for g-non-decreasing mappings which sat-
isfy some generalized nonlinear contractions in partially ordered complete

quasi b-metric spaces. The new theorems are generalizations of very re-
cent fixed point theorems due to L. Ciric, N. Cakic, M. Rojovic, and J. S.
Ume, [Monotone generalized nonlinear contractions in partailly ordered

metric spaces, Fixed Point Theory Appl. (2008), article, ID-131294] and
R. P. Agarwal, M. A. El-Gebeily, and D. O’Regan [Generalized contrac-
tions in partially ordered metric spaces, Appl. Anal. 87 (2008), 1–8].

1. Introduction

The extension of Banach fixed point theorem for contractive mappings has
been done in many directions (cf. [1]-[15]). Recently, Agarwal et al. [1] and
Ciric et al. [5], have come up with some new fixed and common fixed point
theorems of mappings satisfying certain generalized nonlinear contractions in
partially ordered metric spaces. The main idea in [1], [10] and [14] involve
combining the ideas of iterative technique in the contraction mapping principle
with those in the monotone technique.

The aim of this paper is to extend the results of [1] and [5] to the setting
of partially ordered complete quasi b-metric spaces, by using some modified
technique of [5]. Based on the concept of a g-monotone mapping we generalize
some fixed point and common fixed point theorems for g-non-decreasing map-
pings satisfying some generalized nonlinear contractions in partially ordered
complete quasi b-metric spaces.

Let (X,≤) be a partially ordered set. A mapping F : X → X is said to
be non-decreasing if x ≤ y implies that F (x) ≤ F (y) for all x, y ∈ X. For
completeness sake, the main results of [1] and [5] are described below.
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Theorem 1.1 ([1, Theorem 2.2]). Let (X,≤) be a partially ordered set and
suppose there is a metric d on X such that (X, d) is a complete metric space.
Assume there is a non-decreasing function ψ : [0,+∞) → [0,+∞) with

lim
n→∞

ψn(t) = 0

for each t > 0 and also suppose F is a non-decreasing mapping with

(1)

d(F (x), F (y)) ≤ ψ

(
max

{
d(x, y), d(x, F (x)), d(y, F (y)),

1

2
[d(x, F (y)) + d(y, F (x)]

})
for all x ≥ y. Also suppose either

(a) F is continuous or
(b) if {xn} ⊂ X is a non-decreasing sequence with xn → x in X,

then xn ≤ x for all n hold.
If there exists an x0 ∈ X with x0 ≤ F (x0), then F has a fixed point.

Agarwal, El-Gebeily and O’Regan [1] remove the condition that ψ is non-
decreasing in Theorem 1.1 and so they came up with the following fixed point
theorem.

Theorem 1.2 ([1, Theorem 2.3]). Let (X,≤) be a partially ordered set and
suppose there is a metric d on X such that (X, d) is a complete metric space.
Assume there is a continuous function ψ : [0,+∞) → [0,+∞) with ψ(t) < t
for each t > 0 and also suppose F is a non-decreasing mapping with

(2) d(F (x), F (y)) ≤ ψ(max{d(x, y), d(x, F (x)), d(y, F (y))}) for all x ≥ y.

Also suppose either (a) or (b) hold. If there exists an x0 ∈ X with x0 ≤ F (x0),
then F has a fixed point.

The problem to extend Theorem 1.2 to mappings which satisfy (1) was
addressed by Ciric et al. in the following theorem.

Theorem 1.3 ([5, Theorem 2.1]). Let (X,≤) be a partially ordered set and
suppose there is a metric d on X such that (X, d) is a complete metric space.
Assume there is a continuous function φ : [0,+∞) → [0,+∞) with φ(t) < t
for each t > 0 and also suppose F, g : X → X are such that F (X) ⊆ g(X), F
is a g-non-decreasing mapping and
(3)

d(F (x), F (y)) ≤max

{
φ(d(g(x), g(y))), φ(d(g(x), F (x))), φ(d(g(y), F (y))),

φ

(
d(g(x), F (y)) + d(g(y), F (x))

2

)}
for all x, y ∈ X for which g(x) ≥ g(y). Also suppose if {g(xn)} ⊂ X is a
non-decreasing sequence with g(xn) → g(z) in g(X), then g(xn) ≤ g(z) and
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g(z) ≤ g(g(z)) for all n hold. Also suppose g(X) is closed. If there exists an
x0 ∈ X with g(x0) ≤ F (x0), then F and g have a coincidence. Further, if F , g
commute at their coincidence points, then F and g have a common fixed point.

In this paper we mainly extend Theorem 1.3, to the setting of a partially
ordered complete quasi b-metric space, by modifying φ and hence using a some-
what different technique.

2. Main results

The concept of b-metric space was introduced by Czerwik in [6]. Since then
several papers deal with fixed point theory for single valued and multivalued
operators in b-metric spaces (see [2, 6, 15] and references therein).

Definition 2.1. LetX be a non-empty set. A real-valued function d : X×X →
R+ is said to be a quasi b-metric on X with the constant s ≥ 1 if the following
conditions are satisfied:

(M1) d (x, y) ≥ 0 for all x, y ∈ X,
(M2) d (x, y) = 0 if and only if x = y,
(M3) d (x, z) ≤ s (d (x, y) + d (y, z)) for all x, y, z ∈ X.

The pair (X, d) is called a quasi b-metric space. Observe that if s = 1,
then the ordinary triangle inequality is satisfied, however it does not hold true
when s > 1. Thus the class of quasi b-metric spaces is effectively larger than
that of the ordinary quasi-metric spaces. That is, every quasi-metric space is a
quasi b-metric space but the converse need not be true. The following example
explains the above mentioned situation.

Example 2.2. Let X = C([0, 1],R) with the usual partial order. Define d :
X ×X → R+ by

d(f, g) =

{ ∫ 1

0
[g(t)− f(t)]

3
dt, if f ≤ g,∫ 1

0
[f(t)− g(t)]

3
dt, if f ≥ g.

Note that d (f, g) ≥ 0 for all f, g ∈ X, and d (f, g) = 0 if and only if f = g.
Also d (f, g) = d (g, f) if and only if f = g so that d is not symmetric.

Case (a) Let f(t) = 2t, g(t) = 5t and h(t) = 6t for t ∈ [0, 1]. Then

d (f, h) = 16,
d (f, g) = 27

4 ,
d (g, h) = 1

4 .

That is,

d (f, h) > d (f, g) + d (g, h)

so that the usual triangle inequality is not satisfied. Suppose that there exists
s > 1 such that

d (f, h) ≤ s[d (f, g) + d (g, h)];

then putting the values and simplifying we get, 16 ≤ 7s or s ≥ 16
7 .
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Thus for every f, g, h ∈ X, whenever the usual quasi-metric triangle inequal-
ity fails to hold, we can find an s > 1 such that the triangle inequality of the
quasi b-metric is satisfied.

Case (b) Let f(t) = −2t, g(t) = −5t and h(t) = −6t for t ∈ [0, 1]. Then
following the lines similar to Case (a) we conclude that the usual quasi-metric
triangle inequality fails to hold and for every f, g, h ∈ X we can find an s > 1
such that the triangle inequality of the quasi b-metric is satisfied.

From the above discussion it follows that (X, d) is a quasi b-metric space
which is not an ordinary quasi-metric space.

Following example explains that the class of quasi b-metric spaces contains
the class of the usual quasi-metric spaces.

Example 2.3. Let X = lp, where 1 ≤ p <∞, be defined by

lp =

{
(xn)n≥1 ⊆ R :

∞∑
n=1

|xn|p <∞

}
.

Define d : X ×X → R+ by

d(x, y) =

{
0

(
∑∞

n=1 |xn|
p
)

1
p

if x ≤ y,
if x ≥ y.

Then d satisfies all the conditions of a quasi b-metric with the constant s =
p ≥ 1. Indeed, if p = 1 the triangle inequality trivially holds; so let p > 1 and
x = (xn)n≥1; y = (yn)n≥1; z = (zn)n≥1 be sequences in X with x ̸= y ̸= z.
Then

d(x, z) =

( ∞∑
n=1

|xn|p
) 1

p

= d(x, y); d(y, z) =

( ∞∑
n=1

|yn|p
) 1

p

.

Since

|xn|p ≤ p |xn|p = p |xn| |xn|p−1 ≤ p (|xn|+ |yn|) |xn|p−1
for n ∈ N,

we have
∞∑

n=1

|xn|p ≤ p

( ∞∑
n=1

|xn| |xn|p−1
+

∞∑
n=1

|yn| |xn|p−1

)

≤ p


( ∞∑

n=1

|xn|p
) 1

p

+

( ∞∑
n=1

|yn|p
) 1

p


( ∞∑

n=1

|xn|q(p−1)

) 1
q

simplifying we get( ∞∑
n=1

|xn|p)
) 1

p

≤ p


( ∞∑

n=1

|xn|p
) 1

p

+

( ∞∑
n=1

|yn|p
) 1

p

 .
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Thus

d (x, y) ≤ p (d (x, y) + d (y, z))

and d is a quasi b-metric on X.

Definition 2.4. Suppose (X,≤) is a partially ordered set and F, g : X → X
are mappings of X into itself. We say F is g-non-decreasing if for x, y ∈ X,

(4) g(x) ≤ g(y) implies F (x) ≤ F (y).

The main theoretical result of this paper is the following theorem.

Theorem 2.5. Let (X,≤, d) be a partially ordered complete quasi b-metric
space with the constant s ≥ 1. Assume that the function φ : [0,+∞) → [0,+∞)
is such that φ(t) < t

2s for each t > 0 and F, g : X → X are such that F (X) ⊆
g(X), F is a g-non-decreasing mapping and

(5)

d(F (x), F (y)) ≤ max

{
φ(d(g(x), g(y))), φ(d(g(x), F (x))),

φ

(
1

2
[d(g(y), F (y)) + d(g(x), F (x))]

)
,

φ

(
1

2s
[d(g(x), F (y)) + d(g(y), F (x))]

)}
for all x, y ∈ X for which g(x) ≥ g(y). Further, suppose that g(X) is closed
and

(6)
if {g(xn)}⊂X is a non-decreasing sequence with g(xn)→g(z) in g(X),

then g(xn)≤g(z) and g(z)≤g(g(z)) for all n hold.

If there exists an x0 ∈ X with g(x0) ≤ F (x0), then F and g have a coincidence,
and if F , g commute at their coincidence points, then F and g have a common
fixed point.

Proof. Choose x0 ∈ X such that g(x0) ≤ F (x0). Since F (X) ⊆ g(X), there
exists x1 ∈ X such that g(x1) = F (x0). Again F (X) ⊆ g(X) implies that there
exists x2 ∈ X such that g(x2) = F (x1). Continuing this process we can obtain
a sequence {xn} in X such that

(7) g(xn+1) = F (xn) for all n ≥ 0.

Since g(x0) ≤ g(x1) from (4),

F (x0) ≤ F (x1).

Thus, by (7), g(x1) ≤ g(x2) and (4),

F (x1) ≤ F (x2),

that is, g(x2) ≤ g(x3). Proceeding in this way, we get

(8) F (x0) ≤ F (x1) ≤ F (x2) ≤ F (x3) ≤ · · · ≤ F (xn) ≤ F (xn+1) ≤ · · ·.
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Let δn = d(F (xn), F (xn+1)). We shall prove that

(9) δn <
δn−1

2s
for all n ≥ 1.

Since g(xn) ≤ g(xn+1) for all n ≥ 0, putting x = xn and y = xn+1 into (5) we
get

d(F (xn), F (xn+1))

≤ max

{
φ(d(g(xn), g(xn+1))), φ(d(g(xn), F (xn))),

φ

(
1

2
[d(g(xn+1), F (xn+1)) + d(g(xn), F (xn))]

)
,

φ

(
1

2s
[d(g(xn), F (xn+1)) + d(g(xn+1), F (xn))]

)}
.

And by (7),

d(F (xn), F (xn+1))

≤ max

{
φ(d(F (xn−1), F (xn))), φ(d(F (xn−1), F (xn))),

φ

(
1

2
[d(F (xn), F (xn+1)) + d(F (xn−1), F (xn))]

)
,

φ

(
1

2s
d(F (xn−1), F (xn+1))

)}
.

Or
d(F (xn), F (xn+1))

≤ max

{
φ(d(F (xn−1), F (xn))),

φ

(
1

2
[d(F (xn), F (xn+1)) + d(F (xn−1), F (xn))]

)
,

φ

(
1

2s
d(F (xn−1), F (xn+1))

)}
.

If d(F (xn), F (xn+1)) ≤ φ(d(F (xn−1), F (xn))), then (9) holds, as φ(t) < t
2s for

t > 0. If

d(F (xn), F (xn+1)) ≤ φ

(
1

2
[d(F (xn), F (xn+1)) + d(F (xn−1), F (xn))]

)
,

then we have

d(F (xn), F (xn+1))) ≤ φ

(
1

2
[d(F (xn), F (xn+1)) + d(F (xn−1), F (xn))]

)
<

1
2 [d(F (xn), F (xn+1)) + d(F (xn−1), F (xn))]

2s

=
1

4s
[d(F (xn), F (xn+1)) + d(F (xn−1), F (xn))]
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or

d(F (xn), F (xn+1))) <
1

4s− 1
d(F (xn−1), F (xn) ≤

1

2s
d(F (xn−1), F (xn)).

Thus

δn = d(F (xn), F (xn+1)) <
1

2s
d(F (xn−1), F (xn) =

δn−1

2s
.

Lastly, if d(F (xn), F (xn+1)) ≤ φ(d(F (xn−1), F (xn+1))/2s), then we have

d(F (xn), F (xn+1)) ≤ φ

(
1

2s
d(F (xn−1), F (xn+1))

)
<

1

4s2
d(F (xn−1), F (xn+1))

≤ 1

4s2
(s[d(F (xn−1), F (xn)) + d(F (xn), F (xn+1))])

=
1

4s
[d(F (xn−1), F (xn)) + d(F (xn), F (xn+1))]

simplifying we get

d(F (xn), F (xn+1)) <
1

4s− 1
d(F (xn−1), F (xn)) ≤

δn−1

2s
.

Therefore, we have proved that (9) holds. It follows from (9) that for every
s ≥ 1

0 ≤ δn <
δn−1

(2s)
<
δn−2

(2s)2
<
δn−3

(2s)3
< · · · < δ0

(2s)n

and so

(10) lim
n→∞

δn = 0.

Now we prove that {F (xn)} is a Cauchy sequence. Let m > n. Then we have

d(F (xn), F (xm)) ≤ sd(F (xn), F (xn+1)) + s2d(F (xn+1), F (xn+2))

+ s3d(F (xn+2), F (xn+3)) + · · ·+ smd(F (xm−1), F (xm))

= sδn + s2δn+1 + s3δn+2 + · · ·+ smδm−1

≤ sδn +

(
sδn
2

+
sδn
22

+ · · ·+ sδn
2m−n−1

)
≤ sδn

(
1 +

1

2
+

1

22
+

1

23
+ · · ·

)
= 2sδn → 0 as n→ ∞.

Therefore, {F (xn)} is a Cauchy sequence. Since {F (xn)} = {g(xn+1)} ⊆ g(X)
and g(X) is closed, there exists z ∈ X such that

(11) lim
n→∞

g(xn) = g(z)
(
= lim

n→∞
F (xn−1)

)
.
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Now we show that z is a coincidence of F and g. Since from (6) and (11) we
have g(xn) ≤ g(z) for all n, then by the triangle inequality and (5) we get

d(g(z), F (z))

≤ s[d(g(z), F (xn)) + d(F (xn), F (z))]

≤ sd(g(z), F (xn)) + s

[
max

{
φ(d(g(xn), g(z))), φ(d(g(xn), F (xn))),

φ

(
1

2
d(g(z), F (z)) + d(g(xn), F (xn))

)
,

φ

(
d(g(xn), F (z)) + d(g(z), F (xn))

2s

)}]
< sd(g(z), F (xn)) + s

[
max

{
1

2s
d(g(xn), g(z)),

1

2s
(d(g(xn), F (xn)),

1

4s
(d(g(z), F (z)) + d(g(xn), F (xn))),

d(g(xn), F (z)) + d(g(z), F (xn))

4s2

}]
.

Applying limit on both sides as n→ ∞ and simplifying, we get

d(g(z), F (z)) ≤ max

{
1

2
d(g(z), F (z)),

1

4s
d(g(z), F (z))

}
=

1

2
d(g(z), F (z)).

Hence d(g(z), F (z)) = 0, and so F (z) = g(z). Thus F and g have a coincidence
z.

Suppose that Fg(x) = gF (x) for all x ∈ X. Set w = g(z) = F (z). Then

F (w) = F (g(z)) = g(F (z)) = g(w).

Since {g(xn)} is a non-decreasing with limn→∞g(xn) = g(z), from (6) we have
g(z) ≤ g(g(z)) = g(w) and as g(z) = F (z) and g(w) = F (w), from (5) we get

(12)

d(w,F (w)) = d(F (z), F (w))

≤ max

{
φ(d(g(z), g(w))), φ(d(g(z), F (z))),

φ

(
1

2
d(g(w), F (w)) + d(g(z), F (z))

)
,

φ

(
d(g(z), F (w)) + d(g(w), F (z))

2s

)}
< max

{
1

2s
d(g(z), g(w)),

d(g(z), F (w)) + d(g(w), F (z))

4s2

}
.

If

d(F (z), F (w)) <
1

2s
d(g(z), g(w)),
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then clearly d(F (z), F (w)) = 0. If

d(F (z), F (w)) ≤ d(g(z), F (w)) + d(g(w), F (z))

4s2
,

then this gives us

d(F (z), F (w)) <
d(F (w), F (z))

4s2 − 1
.

Interchanging w and z in the equation (12) and simplifying we get

(13) d(F (w), F (z)) <
d(F (z), F (w))

4s2 − 1
.

Thus from equations (12) and (13), we get

d(F (z), F (w)) <
d(F (w), F (z))

4s2 − 1
<
d(F (z), F (w))

(4s2 − 1)2
.

This implies that d(F (z), F (w)) = 0. Thus we get d(w,F (w)) = 0, implying
that

F (w) = g(w) = w

and hence F , g have a common fixed point. □

Remark 2.6. Theorem 2.5 also holds true if F is g-non-decreasing be replaced
with F is g-non-increasing and g(x0) ≤ F (x0) be replaced with F (x0) ≥ g(x0).

Example 2.7. Let X = [−1, 1] with the usual partial order. Define d : X ×
X → R+ by

d(x, y) =

{
0 if and only if x = y∣∣x− y

2

∣∣2 otherwise.

Note that d (x, y) ≥ 0 for all x, y ∈ X, and d (x, y) = 0 if and only if x = y.
Also d (x, y) = d (y, x) if and only if x = y so that d is not symmetric. Let
x = 1, y = 0 and z = −1. Then

d(x, z) = 2.25,
d(x, y) = 1,
d(y, z) = 1

4 ,

so that the usual triangle inequality is not satisfied. However if p ∈ (0, 1], then
we have

d(x, z) ≤ 2
1
p (d(x, y) + d(y, z)) .

Since s = 2
1
p ≥ 2 for p ∈ (0, 1], so d is a quasi b-metric on X which is not a

usual quasi-metric on X. Thus (X, ≤, d) is a partially ordered complete quasi
b-metric space with the constant s ≥ 2. Define F, g : X → X by F (x) = x

6 and

g(x) = x. Let φ : [0,+∞) → [0,+∞) be defined by φ(t) = t
3 . Observe that

for x, y ∈ X, g(x) ≤ g(y) =⇒ F (x) ≤ F (y)
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and hence F is g-nondecreasing. Also for g(x) ≥ g(y)

d(F (x), F (y)) =

∣∣∣∣F (x)− F (y)

2

∣∣∣∣2 =
1

36

∣∣∣x− y

2

∣∣∣2 ≤ 1

16

when x = 1 and y = −1. On the other hand we have

φ(d(g(x), g(y))) ≤ 3

4
,

φ(d(g(x), F (x))) ≤ 1

16

(
121

27

)
,

φ

(
1

2
[d(g(y), F (y)) + d(g(x), F (x))]

)
≤ 1

16

(
121

27

)
,

φ

(
1

2s
[d(g(x), F (y)) + d(g(y), F (x))]

)
≤ 1

16s

(
169

27

)
.

Thus

d(F (x), F (y)) ≤ max


φ(d(g(x), g(y))), φ(d(g(x), F (x))),
φ
(
1
2 [d(g(y), F (y)) + d(g(x), F (x))]

)
,

φ
(

1
2s [d(g(x), F (y)) + d(g(y), F (x))]

)


and so F satisfy the contraction condition. Also g is continuous and non-
decreasing and xn → x implies that g(xn) → g(x) so that by Theorem 2.5
g(xn) ≤ g(x) for all n ≥ 1 and g(x) ≤ gg(x). Note that g(X) = [−1, 1] and
F (X) = [−1

6 ,
1
6 ] ⊆ g(X). Let x0 = −1

2 ; then since

g

(
−1

2

)
= −1

2
< − 1

12
= F

(
−1

2

)
,

by Theorem 2.5, F and g have a coincidence. Since

Fg

(
−1

2

)
= − 1

12
= gF

(
−1

2

)
,

by Theorem 2.5, F and g have a common fixed point.

Corollary 2.8. Let (X,≤, d) be a partially ordered complete quasi b-metric
space with the constant s ≥ 1. Assume there is a function φ : [0,+∞) →
[0,+∞) with φ(t) < t

2s for each t > 0 and also suppose F : X → X is a
non-decreasing mapping and

d(F (x), F (y)) ≤ max

{
φ(d(x, y)), φ(d(x, F (x))), φ

(
d(y, F (y))) + d(x, F (x))

2

)
,

φ

(
d(x, F (y)) + d(y, F (x))

2s

)}
for all x, y ∈ X for which x ≤ y. Also suppose either (i) if {xn} ⊂ X is a
non-decreasing sequence with xn → z in X, then xn ≤ z for all n hold or (ii)
F is continuous.

If there exists an x0 ∈ X with x0 ≤ F (x0), then F has a fixed point.
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Proof. Suppose (i) holds, then the corollary follows by taking g = I (the iden-
tity mapping on X) in Theorem 2.5. If (ii) holds, then from (11) with g = I
we get

z = lim
n→∞

xn+1 = lim
n→∞

F (xn) = F ( lim
n→∞

xn) = F (z). □

Corollary 2.9. Let (X,≤, d) be a partially ordered complete quasi b-metric
space with the constant s ≥ 1. Assume there is a function φ : [0,+∞) →
[0,+∞) with φ(t) < t

2s for each t > 0 and F : X → X is a non-decreasing
mapping such that

(14)

d(F (x), F (y))

≤ max

{
φ(d(x, y)), φ(d(x, F (x))), φ

(
d(y, F (y)) + d(x, F (x))

2s

)}
for all x, y ∈ X for which x ≤ y. Further, suppose either (i) if {xn} ⊂ X is a
non-decreasing sequence with xn → z in X, then xn ≤ z for all n hold or (ii)
F is continuous.

If there exists an x0 ∈ X with x0 ≤ F (x0), then F has a fixed point.

Proof. Follows from Theorem 2.5 with g = I, where I is the identity mapping
on X. □

Corollary 2.10. Let (X,≤, d) be a partially ordered complete quasi b-metric
space with the constant s ≥ 1. Suppose that F : X → X is a non-decreasing
mapping such that

d(F (x), F (y)) ≤ 1

3s
max

{
d(x, y), d(x, F (x)),

d(y, F (y)) + d(x, F (x))

2
,

d(x, F (y)) + d(y, F (x))

2s

}
for all x, y ∈ X for which x ≤ y. Also suppose either (i) if {xn} ⊂ X is a
non-decreasing sequence with xn → z in X, then xn ≤ z for all n hold or (ii)
F is continuous.

If there exists an x0 ∈ X with x0 ≤ F (x0), then F has a fixed point.

Proof. It follows from Theorem 2.5 with φ(t) = t
3s and g = I, where I is the

identity mapping on X. □
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Ćirić Type I-contractions, J. Math. Anal. Appl. 338 (2008), no. 2, 1351–1363.
[9] M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal.

73 (2010), no. 9, 3123–3129.
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