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NONLINEAR CONTRACTIONS IN PARTIALLY ORDERED
QUASI b-METRIC SPACES

MASOOD HUSSAIN SHAH AND NAWAB HUSSAIN

ABSTRACT. Using the concept of a g-monotone mapping we prove some
common fixed point theorems for g-non-decreasing mappings which sat-
isfy some generalized nonlinear contractions in partially ordered complete
quasi b-metric spaces. The new theorems are generalizations of very re-
cent fixed point theorems due to L. Ciric, N. Cakic, M. Rojovic, and J. S.
Ume, [Monotone generalized nonlinear contractions in partailly ordered
metric spaces, Fixed Point Theory Appl. (2008), article, ID-131294] and
R. P. Agarwal, M. A. El-Gebeily, and D. O’Regan [Generalized contrac-
tions in partially ordered metric spaces, Appl. Anal. 87 (2008), 1-8].

1. Introduction

The extension of Banach fixed point theorem for contractive mappings has
been done in many directions (cf. [1]-[15]). Recently, Agarwal et al. [1] and
Ciric et al. [5], have come up with some new fixed and common fixed point
theorems of mappings satisfying certain generalized nonlinear contractions in
partially ordered metric spaces. The main idea in [1], [10] and [14] involve
combining the ideas of iterative technique in the contraction mapping principle
with those in the monotone technique.

The aim of this paper is to extend the results of [1] and [5] to the setting
of partially ordered complete quasi b-metric spaces, by using some modified
technique of [5]. Based on the concept of a g-monotone mapping we generalize
some fixed point and common fixed point theorems for g-non-decreasing map-
pings satisfying some generalized nonlinear contractions in partially ordered
complete quasi b-metric spaces.

Let (X, <) be a partially ordered set. A mapping F : X — X is said to
be non-decreasing if < y implies that F(z) < F(y) for all z,y € X. For
completeness sake, the main results of [1] and [5] are described below.
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Theorem 1.1 ([1, Theorem 2.2]). Let (X, <) be a partially ordered set and
suppose there is a metric d on X such that (X,d) is a complete metric space.
Assume there is a non-decreasing function v : [0, +00) — [0, +00) with

lim ¢"(t) = 0

n—oo

for each t > 0 and also suppose F' is a non-decreasing mapping with

@) F ) < (mox{dle. ). dle, @), do ),
(1) 1
3 e P () + dln F (0]} )

for all x > y. Also suppose either

(a) F is continuous or

(b) if {xn} C X is a non-decreasing sequence with x, —  in X,
then x,, < x for all n hold.
If there exists an xg € X with xg < F(xg), then F has a fized point.

Agarwal, El-Gebeily and O’Regan [1] remove the condition that ¢ is non-
decreasing in Theorem 1.1 and so they came up with the following fixed point
theorem.

Theorem 1.2 ([1, Theorem 2.3]). Let (X, <) be a partially ordered set and
suppose there is a metric d on X such that (X,d) is a complete metric space.
Assume there is a continuous function 9 : [0,4+00) — [0, +00) with ¥(t) < t
for each t > 0 and also suppose F' is a non-decreasing mapping with

(2) d(F(x), F(y)) < Pp(max{d(z,y), d(z, F(x)),d(y, F(y))}) for all x>y.

Also suppose either (a) or (b) hold. If there exists an xg € X with xo < F(x0),
then F has a fized point.

The problem to extend Theorem 1.2 to mappings which satisfy (1) was
addressed by Ciric et al. in the following theorem.

Theorem 1.3 ([5, Theorem 2.1]). Let (X, <) be a partially ordered set and
suppose there is a metric d on X such that (X,d) is a complete metric space.
Assume there is a continuous function ¢ : [0,4+00) — [0,+00) with p(t) < t
for each t > 0 and also suppose F,g: X — X are such that F(X) C g(X), F
is a g-non-decreasing mapping and

(3)
d(F(z), F(y)) < maX{w(d(g(x)a 9(¥)), p(d(g(z), F(2))), p(d(9(y), F (),

” <d(g(fc),F(y)) ;d(g(y),F(x))> }

for all x,y € X for which g(xz) > g(y). Also suppose if {g(zn)} C X is a
non-decreasing sequence with g(x,) — g(z) in g(X), then g(x,) < g(z) and
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9(z) < g(g(2)) for all n hold. Also suppose g(X) is closed. If there exists an
2o € X with g(x9) < F(xg), then F and g have a coincidence. Further, if F, g
commute at their coincidence points, then F' and g have a common fixed point.

In this paper we mainly extend Theorem 1.3, to the setting of a partially
ordered complete quasi b-metric space, by modifying ¢ and hence using a some-
what different technique.

2. Main results

The concept of b-metric space was introduced by Czerwik in [6]. Since then
several papers deal with fixed point theory for single valued and multivalued
operators in b-metric spaces (see [2, 6, 15] and references therein).

Definition 2.1. Let X be a non-empty set. A real-valued functiond : X x X —
R is said to be a quasi b-metric on X with the constant s > 1 if the following
conditions are satisfied:

(My) d(z,y) >0 for all z,y € X,

(Ms) d(z,y) = 0 if and only if z = y,

(M3) d(z,z) <s(d(z,y) +d(y,z)) for all z,y,z € X.

The pair (X,d) is called a quasi b-metric space. Observe that if s = 1,
then the ordinary triangle inequality is satisfied, however it does not hold true
when s > 1. Thus the class of quasi b-metric spaces is effectively larger than
that of the ordinary quasi-metric spaces. That is, every quasi-metric space is a
quasi b-metric space but the converse need not be true. The following example
explains the above mentioned situation.

Example 2.2. Let X = C(]0,1],R) with the usual partial order. Define d :
X x X — R* by

d(f )_ fO ]dt if f <y,
9 fO ] dt, if f > g.
Note that d ( f,g) 0 for all f,g € X, and d(f,g) = 0 if and only if f = g.
Also d(f,g9) =d(g,f) if and only if f = g so that d is not symmetric.
Case (a) Let f(t) =2t, g(t )— 5t and h(t) = 6t for ¢ € [0, 1]. Then
(f7 ) - 1?
d(gah)_ 4

That is,

d(f,h)>d(f,g)+d(g,h)
so that the usual triangle inequality is not satisfied. Suppose that there exists
s > 1 such that

d(f,h) <sld(f,g)+d(g,h);

then putting the values and simplifying we get, 16 < 7s or s > 76
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Thus for every f, g, h € X, whenever the usual quasi-metric triangle inequal-
ity fails to hold, we can find an s > 1 such that the triangle inequality of the
quasi b-metric is satisfied.

Case (b) Let f(t) = —2t, g(t) = —5t and h(t) = —6¢ for t € [0,1]. Then
following the lines similar to Case (a) we conclude that the usual quasi-metric
triangle inequality fails to hold and for every f,g,h € X we can find an s > 1
such that the triangle inequality of the quasi b-metric is satisfied.

From the above discussion it follows that (X,d) is a quasi b-metric space
which is not an ordinary quasi-metric space.

Following example explains that the class of quasi b-metric spaces contains
the class of the usual quasi-metric spaces.

Example 2.3. Let X =1,, where 1 < p < 0o, be defined by

lp = {(xn)n>1 CR: Z |z, | < oo} )

n=1

Define d : X x X — R* by

0 ifx <y
d = o7
(:an) { (220:1 |xn|p) lf €T Z y.

Then d satisfies all the conditions of a quasi b-metric with the constant s =
p > 1. Indeed, if p = 1 the triangle inequality trivially holds; so let p > 1 and
= (Tn)n>1; ¥ = (Yn)n>1; 2 = (2n)n>1 be sequences in X with = # y # z.

=

Then
1
oo 2
- (Z mw) =d(z,y); dy,z (Z ynv’)
n=1
Since
2 l? < planl’ = plea] [2a]P " < p(@nl + [ynl) |2aP~" for n € N,
we have
oo oo o0
2 leal” < (Z el a4 3 ol '“'p1>
n=1 n=1 n=1
P
<

1 1 1
) (z |) (z ym) (z 10 )
n=1 n=1 =1
simplifying we get

(Tiw’));@ (iw”) (Z_}y )
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Thus
d(z,y) <p(d(z,y)+d(y,z))
and d is a quasi b-metric on X.

Definition 2.4. Suppose (X, <) is a partially ordered set and F,g: X — X
are mappings of X into itself. We say F' is g-non-decreasing if for z,y € X,

(4) 9(x) < g(y) implies F(z) < F(y).
The main theoretical result of this paper is the following theorem.

Theorem 2.5. Let (X,<,d) be a partially ordered complete quasi b-metric
space with the constant s > 1. Assume that the function ¢ : [0, +00) — [0, +00)
is such that o(t) < o for each t >0 and F,g: X — X are such that F(X) C
9(X), F is a g-non-decreasing mapping and

duﬁx%Fuﬁ)Srmm{@@ﬂﬂwxg@»%w@ﬂﬂx%F@ﬂD7
514l )+ dlo(o). F@)]).

J-ldtale). F) + dlat). )] |

for all x,y € X for which g(x) > g(y). Further, suppose that g(X) is closed

and
(6)

if {g(xn)} CX is a non-decreasing sequence with g(x,)— g(z) in g(X),
then g(x,) <g(2) and g(z)<g(g(z)) for all n hold.

If there exists an xg € X with g(x) < F(xg), then F' and g have a coincidence,
and if F, g commute at their coincidence points, then F and g have a common
fixed point.

Proof. Choose zg € X such that g(xg) < F(xp). Since F(X) C g(X), there
exists x1 € X such that g(x1) = F(xzg). Again F(X) C g(X) implies that there
exists 2 € X such that g(x2) = F(x1). Continuing this process we can obtain
a sequence {xz,} in X such that

(7) 9(Tnt1) = F(x,) forall n>0.
Since g(zo) < g(x1) from (4),
F(zg) < F(x1).
Thus, by (7), g(z1) < g(22) and (4),
F(x1) < F(22),
that is, g(z2) < g(z3). Proceeding in this way, we get
(8)  F(xo) < F(z1) < F(az) < Fag) <+ < F(an) < Fanga) <- -
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Let 6, = d(F(zy,), F(xn+1)). We shall prove that

(9) dn, < 52—;1 for all n>1.
Since g(x,) < g(xn41) for all n > 0, putting @ = x,, and y = x4 into (5) we
get
A(F(0), F@ns1))
< maxd e (dlg(n), 0 11)), o), ),
@(;[d(g(l‘n%—l)v}?(xn-ﬁ-l)) + d(g(xn)vF(xn))])>
o 55latalon), Flan) + dlg(enn). Fa)]) .
And by (7),
A(F(0), F@ns1))
< max{sow(F(mn1>,F<mn>>>,¢<d<F<xn1>,F<xn>>>,
o (GF @), Flanen)) + d(Flon). Fo)])
(5P ) Flani)) |
Or

d(F(zn), F(2n41))

S max{(p(d(F(xnl),F(xn)))a

o (GAF @), Pl + APl ). o))

2s

If d(F(zn), F(n41)) < @(d(F(n-1), F(x,))), then (9) holds, as ¢(t) < 5 for
t>0.If

A (@), Flonin)) < (Gl @). Flonn) + AP0, Flaa))]).
then we have

d(F(xn)7F($n+1))) <

o(55d(P0). Pl ) |

(S @), Pl + d(F o). Flo)] )
S(F (). F(@ns1)) + (P, ), Fla,)
2s

= R dE@n), F(@ni)) + d(F(@n-1), Fzn))]

AS)

—_
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Thus
1 6n71
O = d(F (wn), F(zn11)) < 5-d(F(n_1), Fwn) = ==

Lastly, if d(F(2n), F(2n+1)) < @(d(F(zp-1), F(n+1))/2s), then we have

AF @) Flonis)) < ¢ (5od(Fea), Flan) )

< %Szd(F(:ﬂnq),F(an))

1
452
1

= lAF@n-1), F(zn)) + d(F(zn), F(zn41))]

IN

(sld(F(zn-1), F(2n)) + d(F(2n), F(2n11))])

simplifying we get
5n71
s—1 25

4
Therefore, we have proved that (9) holds. It follows from (9) that for every
s>1

d(F(zn), F(2n41)) < d(F(zn-1), F(zn)) <

5n—1 5n72 5n73 50
<5, .
VS0 T S S 5 e
and so
(10) ”11_>n;o(5n =0.

Now we prove that {F(z,)} is a Cauchy sequence. Let m > n. Then we have
A(F(20), F(2m)) < sd(F(@0), F(@ns1)) + 82d(F(@ns1), F(wn2))
+ 82 d(F(zni2), F(Tne3)) + -+ 8™ d(F(zm-1), F(zm))
= 80, + 525n+1 + 535n+2 + o+ 801

<s§n 50, 50, )
T e . L

IN

2 922 gm—n—1

IN

1 1 1
56n(1+2+22+23+~~>256n%0asn%oo.

Therefore, { F(z,)} is a Cauchy sequence. Since {F(z,)} = {g(zn+1)} C 9(X)
and g(X) is closed, there exists z € X such that

(11) lim g(z,) = g(z) (: lim F(scn,l)) .

n—oo n—oo
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Now we show that z is a coincidence of F' and g. Since from (6) and (11) we
have g(x,) < g(z) for all n, then by the triangle inequality and (5) we get

d(g(z), F(z))
< sld(9(2), F(xn)) + d(F(xn), F(2))]

< sd(g(2), Fan)) + {maX{w(d(g(xn), 9(2))), e(d(g(zn), F(xn))),

o (5U6C)FE) + dlgten). F(2)).
o (A0t FED o) ) ) |

2s

< slgl) Plan) + s max{ 5 dlalon).o(:), g dlatn). Flon)

2s
£ (A(9(2). F(2)) + dlg(wa), Fln),

z)
d(g(xn), F'(2)) + d(g(2), F(zn)) H
452 '

Applying limit on both sides as n — oo and simplifying, we get
1 1 1
g, () < max { Lol FE)). 1dl0(a), ) b = Jala(:). P,

Hence d(g(z), F(z)) = 0, and so F(z) = g(z). Thus F and ¢ have a coincidence
z.

Suppose that Fg(x) = gF (z) for all z € X. Set w = g(z) = F(z). Then
F(w) = F(g(2)) = 9(F(2)) = g(w).

Since {g(zn)} is a non-decreasing with lim, . g(z,) = g(2), from (6) we have
9(2) < 9(9(2)) = g(w) and as g(z) = F(z) and g(w) = F(w), from (5) we get

d(w, F(w)) = d(F(2), F(w))

< maX{sD(d(g(z)vg(W)))a@(d(g(Z),F(Z))%

” o (5tatu), Flw) + dlo(2). ().
dlg(). F(w)) + d(g(w). F(2))
o 2 )}
< o { Lt atu, H2LE )+ otw) P
If
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then clearly d(F(z), F(w)) = 0. If

d(g(2), F(w)) + d(g(w), F'(z))
452 ’

d(F(2), F(w)) <

then this gives us
d(F(w), F(2))
452 — 1
Interchanging w and z in the equation (12) and simplifying we get

(13) d(F(w), F(z)) < W& FWw)

452 — 1
Thus from equations (12) and (13), we get
d(F(w), F(z)) _ d(F(2), F(w))
452 — 1 (42 —1)2

This implies that d(F(z), F(w)) = 0. Thus we get d(w, F(w)) = 0, implying
that

d(F(z), F(w)) <

d(F(2), F(w)) <

F(w) = g(w) = w

and hence F', g have a common fixed point. (]

Remark 2.6. Theorem 2.5 also holds true if F' is g-non-decreasing be replaced
with F'is g-non-increasing and g(x¢) < F(xg) be replaced with F'(xq) > g(zo).

Example 2.7. Let X = [—1, 1] with the usual partial order. Define d : X x
X — RT by
d(xy):{o , if and only if z = y
’ |lo — 4|” otherwise.
Note that d (z,y) > 0 for all z,y € X, and d(z,y) = 0 if and only if z = y.
Also d(z,y) = d(y,z) if and only if z = y so that d is not symmetric. Let
r=1,y=0and z=—1. Then

d(x,z) = 2.25,
d(z,y) =1,
d(y,2) = 1,

so that the usual triangle inequality is not satisfied. However if p € (0, 1], then
we have

d(z,z) < 2r (d(z,y) + d(y, 2)) .

Since s = 27 > 2 for p € (0,1], so d is a quasi b-metric on X which is not a
usual quasi-metric on X. Thus (X, <, d) is a partially ordered complete quasi
b-metric space with the constant s > 2. Define F,g: X — X by F(z) = ¢ and
g(z) = z. Let ¢ : [0,+00) — [0,400) be defined by ¢(t) = £. Observe that

forz,y € X, g(v) <gy) = F(z) < F(y)



126 MASOOD HUSSAIN SHAH AND NAWAB HUSSAIN

and hence F is g-nondecreasing. Also for g(z) > g(y)

d(F(x), F(y)) = \F(m) - F;y)‘ = |o- ¢

when z = 1 and y = —1. On the other hand we have

5 16 \ 27
o (213[ (9(x), F(y)) + d(g( ),F(w))]> = % (126;)>

Thus

e(d(g(x ) 9))), p(d(g(x ) (l’))%

d(F(z), F(y)) <max{ ¢ (5[d(g(y), Fy)) +d(g(z )]) -

¢ (35d(g(2), Fy)) + d(() ())D
and so F' satisfy the contraction condition. Also g is continuous and non-
decreasing and z, — « implies that g(z,) — g(z) so that by Theorem 2.5
g(xn) < g(z) for all n > 1 and g(z) < gg(z). Note that g(X) = [—1,1] and
F(X)=[-%,1] C g(X). Let 2o = —1; then since

676
1 1 1 1
g<_2>__2<_12_F<_2>’

by Theorem 2.5, F' and g have a coincidence. Since

1 1 1
Fg(-2)=—==gF (-5,
2 12 2
by Theorem 2.5, F' and g have a common fixed point.

Corollary 2.8. Let (X,<,d) be a partially ordered complete quasi b-metric
space with the constant s > 1. Assume there is a function ¢ : [0,4+00) —
[0, +00) with ¢(t) < & for each t > 0 and also suppose F : X — X is a
non-decreasing mapping and

A(F(z), F(y)) < max{w(d(m,y)),w(d(x,F(:c))),sa
d(z, F(y)) + d(y, F(x))
(TG |

for all z,y € X for which x < y. Also suppose either (1) if {zn} C X is a
non-decreasing sequence with x, — z in X, then x, < z for all n hold or (ii)
F is continuous.

If there exists an xo € X with xo < F(xzq), then F has a fized point.

7

(d(y,F(y))) +

. d(%F(fﬂ)))
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Proof. Suppose (i) holds, then the corollary follows by taking g = I (the iden-
tity mapping on X) in Theorem 2.5. If (ii) holds, then from (11) with g = I
we get

z= nh%rrgoxnﬂ = nl;rr;OF(xn) = F(nlirrgoxn) = F(z2). m
Corollary 2.9. Let (X,<,d) be a partially ordered complete quasi b-metric
space with the constant s > 1. Assume there is a function ¢ : [0,4+00) —
[0, +00) with (t) < & for each t > 0 and F : X — X is a non-decreasing
mapping such that

d(F(z), F(y))
< max {gp(d(x, ), o(d(z, F(z))), ¢ (d(y, Fy)) ;;d(x, F@;))) }

for all z,y € X for which x < y. Further, suppose either (i) if {z,} C X is a
non-decreasing sequence with x,, — z in X, then x, < z for all n hold or (ii)
F s continuous.

If there exists an ¢ € X with xg < F(xo), then F has a fized point.

(14)

Proof. Follows from Theorem 2.5 with g = I, where I is the identity mapping
on X. U

Corollary 2.10. Let (X, <,d) be a partially ordered complete quasi b-metric
space with the constant s > 1. Suppose that F' : X — X is a non-decreasing
mapping such that

AF @), F () < 5 max{dlo. ) e, F @),

d(z, F(y)) + d(y, F(x)) }

d(y, F(y)) + d(z, F(z))
2 )

2s

for all z,y € X for which x < y. Also suppose either (i) if {z,} C X is a
non-decreasing sequence with x, — z in X, then x, < z for all n hold or (ii)
F' is continuous.

If there exists an xg € X with xg < F(xzq), then F has a fized point.

Proof. Tt follows from Theorem 2.5 with ¢(t) = & and g = I, where I is the
identity mapping on X. ([l
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