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Abstract. In this work, we study generalized integral type F -contractions in partial metric

spaces and establish some common fixed point theorems. Also, we give some consequences

of the established result. Our results extend and generalize several results from the existing

literature.

1. Introduction

Fixed point theory is one of the most important topic in the development
of nonlinear analysis. As it is well known, one of the most useful theorems in
nonlinear analysis is the Banach contraction principle [7]. A mapping T : M→
M where (M, d) is a metric space, is said to be a contraction if there exists

0Received March 1, 2022. Revised June 18, 2022. Accepted September 13, 2022.
02020 Mathematics Subject Classification: 47H10, 54H25.
0Keywords: Common fixed point, generalized integral type F -contraction, partial metric

space.
0Corresponding author: G. S. Saluja(saluja1963@gmail.com),

H. G. Hyun(hyunhg8285@kyungnam.ac.kr).



108 G. S. Saluja, H. G. Hyun and J. K. Kim

q ∈ [0, 1) such that for all x, y ∈M,

d(T (x), T (y)) ≤ q d(x, y). (1.1)

If the metric space (M, d) is complete then the mapping satisfying (1.1) has
a unique fixed point and for every u0 ∈ M a sequence {Tnu0}n∈N is conver-
gent to the fixed point. Inequality (1.1) implies continuity of T . Many authors
generalized this famous result in different ways. Afterwards, the crucial role
of the principle in existence and uniqueness problems arising in mathematics
has been realized which fact directed the researchers to extend and generalize
the principle in many ways. Indeed, one of those ways is integral type contrac-
tion which was introduced by Branciari [8] in 2002 and proved a fixed point
result for mappings defined on a complete metric space satisfying a general
contractive type condition of integral type.

Matthews [14] introduced the concept of partial metric space as a part
of the study of denotational semantics of dataflow networks [13, 14, 16, 23].
It is widely recognized that partial metric spaces play an important role in
constructing models in the theory of computation. In partial metric spaces
the distance of a point in the self may not be zero. Introducing partial metric
space, Matthews extended the Banach contraction principle [7] and proved the
fixed point theorem in this space.

In 2012, Wardowski [22] introduced a new type of contraction called F -
contraction and proved a new fixed point theorem related to F -contraction
and give an example to showing that the obtained extension is significant.
Later, a large number of researchers have proved many results in this direction
(for more details see the following articles: Acar et al. [2], Acar [3], Afassinou
et al. [4], Ahmad et al., [5], Kitkuan et al. [10], Mani et al. [12], Secelean [17],
Shoaib et al. [18], Shukla and Radenovic [19], Tomar et al. [20], Younis et al.
[24] and many others).

In this work, we study generalized integral type F -contraction in partial
metric spaces and establish some common fixed point theorems. Our results
extend and generalize several results in the existing literature.

2. Preliminaries

Now, we give some basic properties and results on the concept of partial
metric space (PMS).

Definition 2.1. ([14]) Let M be a nonempty set and let p : M×M → R+

be a mapping such that for all x, y, z ∈M the followings are satisfied:

(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y),
(P2) p(x, x) ≤ p(x, y),
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(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then p is called a partial metric on M and the pair (M, p) is called a partial
metric space (in short PMS).

Remark 2.2. It is clear that if p(x, y) = 0, then x = y. But, on the contrary
p(x, x) need not be zero.

Example 2.3. ([6]) LetM = R+, where R+ = [0,+∞) and p : M×M→ R+

given by p(x, y) = max{x, y} for all x, y ∈ R+. Then (R+, p) is a partial metric
space.

Example 2.4. ([6]) Let M = {[a, b] : a, b ∈ R, a ≤ b}. Then p
(

[a, b], [c, d]
)

=

max{b, d} −min{a, c} defines a partial metric p on M.

Various applications of this space has been extensively investigated by many
authors (see [11], [21] for details).

Remark 2.5. ([9]) Let (M, p) be a partial metric space.

(1) The function dm : M ×M → R+ defined as dm(x, y) = 2p(x, y) −
p(x, x) − p(y, y) is a (usual) metric on M and (M, dm) is a (usual)
metric space.

(2) The function ds : M×M → R+ defined as ds(x, y) = max{p(x, y) −
p(x, x), p(x, y) − p(y, y)} is a (usual) metric on M and (M, ds) is a
(usual) metric space.

Note also that each partial metric p on M generates a T0 topology τp on
M, whose base is a family of open p-balls {Bp(x, ε) : x ∈ M, ε > 0} where
Bp(x, ε) = {y ∈M : p(x, y) ≤ p(x, x) + ε} for all x ∈M and ε > 0.

On a partial metric space the notions of convergence, the Cauchy sequence,
completeness and continuity are defined as follows [13].

Definition 2.6. ([13]) Let (M, p) be a partial metric space. Then

(1) a sequence {xn} in (M, p) is said to be convergent to a point x ∈ M
if p(x, x) = limn→∞ p(xn, x),

(2) a sequence {xn} is called a Cauchy sequence if limm,n→∞ p(xm, xn)
exists and is finite,

(3) (M, p) is said to be complete if every Cauchy sequence {xn} in M
converges to a point x ∈M with respect to τp. Furthermore,

lim
m,n→∞

p(xm, xn) = lim
n→∞

p(xn, x) = p(x, x),
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(4) A mapping S : M→M is said to be continuous at y0 ∈M if for every
ε > 0, there exists δ > 0 such that

S
(
Bp(y0, δ)

)
⊂ Bp

(
S(y0), ε

)
.

Definition 2.7. ([15]) Let (M, p) be a partial metric space. Then

(1) a sequence {xn} in (M, p) is called 0-Cauchy if limm,n→∞ p(xm, xn) =
0,

(2) (M, p) is said to be 0-complete if every 0-Cauchy sequence {xn} inM
converges to a point x ∈M, such that p(x, x) = 0.

Lemma 2.8. ([13, 14]) Let (M, p) be a partial metric space. Then

(a1) a sequence {xn} in (M, p) is a Cauchy sequence if and only if it is a
Cauchy sequence in the metric space (M, dm),

(a2) (M, p) is complete if and only if the metric space (M, dm) is complete,

(a3) a subset E of a partial metric space (M, p) is closed if a sequence {xn}
in E such that {xn} converges to some x ∈M, then x ∈ E.

Lemma 2.9. ([1]) Assume that xn → u as n → ∞ in a partial metric space
(M, p) such that p(u, u) = 0. Then limn→∞ p(xn, y) = p(u, y) for every y ∈
M.

Definition 2.10. ([22]) Let F : [0,∞)→ R be a mapping satisfying:

(F1) F is strictly increasing, that is, for all α, β ∈ [0,∞) such that α < β,
F (α) < F (β).

(F2) For each sequence {αn}n∈N of positive numbers limn→∞ αn = 0 if and
only if limn→∞ F (αn) = −∞.

(F3) There exists k ∈ (0, 1) such that limα→ 0+ α
kF (α) = 0.

We denote by F , the set of all functions satisfying the conditions (F1)-(F3).

Definition 2.11. ([22]) A mapping T : M→M is said to be an F -contraction
if there exists τ > 0 such that

∀x, y ∈M,
{

(d(Tx, Ty)) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))
}
. (2.1)

Theorem 2.12. ([22]) Let (M, d) be a complete metric space and let T : M→
M be an F -contraction. Then T has a unique fixed point in M.

Example 2.13. ([22]) Let F : [0,∞) → R be given by F (α) = lnα. Then F
satisfies (F1)-(F3). Each mapping satisfying (2.1) is an F -contraction such
that

d(Tx, Ty) ≤ e−τ d(x, y), (2.2)
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for all x, y ∈ M, Tx 6= Ty. It is clear that for x, y ∈ M such that Tx =
Ty the inequality d(Tx, Ty) ≤ e−τ d(x, y) also holds, that is, T is a Banach
contraction [7].

3. Main results

In this section, we shall prove some unique common fixed point theorems
in the setting of complete partial metric spaces via generalized integral type
F -contraction.

Theorem 3.1. Let (M, p) be a complete partial metric space and let S, T : M→
M be two self-mappings. Suppose that there exist F ∈ F and τ > 0 such that
for all x, y ∈M satisfying p(Sx, Ty) > 0, the following holds:

τ + F
(∫ p(Sx,Ty)

0
φ(t)dt

)
≤ F

(∫ M(x,y)

0
φ(t)dt

)
, (3.1)

where

M(x, y) = max
{
p(x, y),

1

2
[p(x, Sx)+(y, Ty)],

1

3
[p(x, y)+p(x, Ty)+p(y, Sx)]

}
and φ : [0,∞) → [0,∞) is a Lebesgue integrable mapping which is summable
on each compact subset of [0,∞), nonnegative and for each ε > 0∫ ε

0
φ(t)dt > 0, (3.2)

and F is continuous. Then S and T have a unique common fixed point in M.

Proof. Let y0 ∈ M be an arbitrary point. Define a sequence {yn} for n ≥ 0
by

y2n+1 = Sy2n and y2n+2 = Ty2n+1. (3.3)

Step I. Now, we have to prove that p(yn+1, yn)→ 0 as n→∞. By equation
(3.1), we have

τ + F
(∫ p(y2n+1,y2n)

0
φ(t)dt

)
= τ + F

(∫ p(Sy2n,T y2n−1)

0
φ(t)dt

)
≤ F

(∫ M(y2n,y2n−1)

0
φ(t)dt

)
, (3.4)

where

M(y2n, y2n−1) = max
{
p(y2n, y2n−1),

1

2
[p(y2n, Sy2n) + p(y2n−1, T y2n−1)],

1

3
[p(y2n, y2n−1) + p(y2n, T y2n−1) + p(y2n−1, Sy2n)]

}
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= max
{
p(y2n, y2n−1),

1

2
[p(y2n, y2n+1) + p(y2n−1, y2n)],

1

3
[p(y2n, y2n−1) + p(y2n, y2n) + p(y2n−1, y2n+1)]

}
≤ max

{
p(y2n−1, y2n),

1

2
[p(y2n+1, y2n) + (y2n−1, y2n)],

1

3
[p(y2n−1, y2n) + p(y2n, y2n) + p(y2n−1, y2n)

+p(y2n+1, y2n)− p(y2n, y2n)]
}
. (3.5)

If max
{
p(y2n−1, y2n), p(y2n+1, y2n)

}
= p(y2n+1, y2n), then it follows from (3.4)

τ + F
(∫ p(y2n+1,y2n)

0
φ(t)dt

)
≤ F

(∫ p(y2n+1,y2n)

0
φ(t)dt

)
, (3.6)

which is a contradiction (as τ > 0). Thus,

max
{
p(y2n−1, y2n), p(y2n+1, y2n)

}
= p(y2n−1, y2n). (3.7)

From equation (3.4), we have

F
(∫ p(y2n+1,y2n)

0
φ(t)dt

)
≤ F

(∫ p(y2n−1,y2n)

0
φ(t)dt

)
− τ. (3.8)

Continuing in the same way, we obtain

F
(∫ p(y2n−1,y2n)

0
φ(t)dt

)
≤ F

(∫ p(y2n−2,y2n−1)

0
φ(t)dt

)
− τ. (3.9)

Using (3.8) and (3.9), we get

F
(∫ p(y2n+1,y2n)

0
φ(t)dt

)
≤ F

(∫ p(y2n,y2n−1)

0
φ(t)dt

)
− τ

≤ F
(∫ p(y2n−1,y2n−2)

0
φ(t)dt

)
− 2τ

≤ · · ·

≤ F
(∫ p(y1,y0)

0
φ(t)dt

)
− (2n)τ. (3.10)

Then, it follows limn→∞ F
( ∫ p(yn+1,yn)

0 φ(t)dt
)

= −∞. By F ∈ F and (F2),

we have

lim
n→∞

p(yn+1, yn) = 0. (3.11)
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Step II. Now, we have to show that {yn} is a p-Cauchy sequence. Put
tn = p(yn+1, yn), n = 0, 1, 2, . . . . By F ∈ F and (F3), there exists k ∈ (0, 1)
such that

lim
n→∞

(tn)kF (tn) = 0. (3.12)

By (3.10), we have(
p(y2n+1, y2n)

)k[
F
(∫ p(y2n+1,y2n)

0
φ(t)dt

)
− F

(∫ p(y1,y0)

0
φ(t)dt

)]

≤ −(2n)
(
p(y2n+1, y2n)

)k
τ ≤ 0. (3.13)

Using the above inequality and (3.12), we get

lim
n→∞

n
(
p(yn+1, yn)

)k
= 0. (3.14)

Therefore, there exists a positive integer n1 ∈ N such that

n
(
p(yn+1, yn)

)k
< 1

for all n > n1, or

p(yn+1, yn) <
1

n1/k
. (3.15)

Let m,n ∈ N with m > n > n1, using (P4) (triangular inequality), we have

p(yn, ym) ≤ p(yn, yn+1) + p(yn+1, yn+2) + · · ·+ p(ym−1, ym)

−[p(yn+1, yn+1) + p(yn+2, yn+2) + · · ·+ p(ym−1, ym−1)]

≤ p(yn, yn+1) + p(yn+1, yn+2) + · · ·+ p(ym−1, ym)

=
m−1∑
i=n

p(yi+1, yi) ≤
∞∑
i=n

p(yi+1, yi)

≤
∞∑
i=n

1

i1/k
. (3.16)

Since k ∈ (0, 1), the series
∑∞

i=n

(
1
i1/k

)
is convergent, so

lim
n,m→∞

p(yn, ym) = 0. (3.17)

Thus {yn} is a Cauchy sequence in (M, p). Therefore, {yn} is a Cauchy
sequence in (M, dm). Since (M, p) is complete partial metric space, by Lemma
2.8, (M, dm) is also complete. Thus, there exists a u ∈M such that limn→∞ yn
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= u and limn→∞ dm(yn, u) = 0. Moreover, by Definition 2.6 (3) and equation
(3.17), we have

p(u, u) = lim
n→∞

p(yn, u) = lim
n,m→∞

p(yn, ym) = 0. (3.18)

Step III. Now, we shall show that u is a common fixed point of S and T .
Using given contractive condition (3.1) for x = y2n and y = u, we have

τ + F
(∫ p(y2n+1,Tu)

0
φ(t)dt

)
= τ + F

(∫ p(Sy2n,Tu)

0
φ(t)dt

)
≤ F

(∫ M(y2n,u)

0
φ(t)dt

)
, (3.19)

where

M(y2n, u) = max
{
p(y2n, u),

1

2
[p(y2n, Sy2n) + p(u, Tu)],

1

3
[p(y2n, u) + p(y2n, Tu) + p(u, Sy2n)]

}
= max

{
p(y2n, u),

1

2
[p(y2n, y2n+1) + p(u, Tu)],

1

3
[p(y2n, u) + p(y2n, Tu) + p(u, y2n+1)]

}
. (3.20)

Passing to the limit as n→∞ in (3.20) and using (3.18), we obtain

M(y2n, u)→ max
{

0,
p(u, Tu)

2
,
p(u, Tu)

3

}
=
p(u, Tu)

2
< p(u, Tu). (3.21)

Now, using (3.19) and (3.21), we get

τ + F
(∫ p(y2n+1,Tu)

0
φ(t)dt

)
≤ F

(∫ p(u,Tu)

0
φ(t)dt

)
. (3.22)

Passing to the limit as n→∞ in (3.22) and using continuity of F , we obtain

τ + F
(∫ p(u,Tu)

0
φ(t)dt

)
≤ F

(∫ p(u,Tu)

0
φ(t)dt

)
,

which is a contradiction since τ > 0. Thus, we have Tu = u. This shows that
u is a fixed point of T . By similar fashion we can show that Su = u. Hence u
is a common fixed point of S and T .

Step IV. We now show uniqueness of common fixed point. Assume that
u′ is another common fixed point of S and T , that is, Su′ = u′ = Tu′ with
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u 6= u′. From the given contractive condition (3.1), we have

τ + F
(∫ p(u,u′)

0
φ(t)dt

)
= F

(∫ p(Su,Tu′)

0
φ(t)dt

)
≤ F

(∫ M(u,u′)

0
φ(t)dt

)
, (3.23)

where

M(u, u′) = max
{
p(u, u′),

1

2
[p(u, Su) + p(u′, Tu′)],

1

3
[p(u, u′) + p(u, Tu′) + p(u′, Su)]

}
= max

{
p(u, u′),

1

2
[p(u, u) + p(u′, u′)],

1

3
[p(u, u′) + p(u, u′) + p(u′, u)]

}
. (3.24)

Using condition (P3) and (3.18), we get

M(u, u′)→ max
{
p(u, u′), 0, p(u, u′)

}
= p(u, u′). (3.25)

From (3.23) and (3.25), we obtain

τ + F
(∫ p(u,u′)

0
φ(t)dt

)
≤ F

(∫ p(u,u′)

0
φ(t)dt

)
, (3.26)

which is a contradiction since τ > 0. Thus, we have u = u′. This shows that
the common fixed point of S and T is unique. This completes the proof. �

Theorem 3.2. Let (M, p) be a complete partial metric space and let S, T : M→
M be two self-mappings. Suppose that there exist F ∈ F and τ > 0 such that
for all x, y ∈M satisfying p(Sx, Ty) > 0, the following holds:

τ + F
(∫ p(Sx,Ty)

0
φ(t)dt

)
≤ F

(∫ M(x,y)

0
φ(t)dt

)
,

where M(x, y) and φ are as in Theorem 3.1. If the following hold:

(i) S or T is continuous or
(ii F is continuous.

Then S and T have a unique common fixed point in M.

Proof. Let y0 ∈ M be an arbitrary point. Define a sequence {yn} for n ≥ 0
by

y2n+1 = Sy2n and y2n+2 = Ty2n+1.
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Step I. We have to prove that p(yn+1, yn) → 0 as n → ∞. The proof is
similar to that Step I of Theorem 3.1.

We will now prove that S and T have a common fixed point. Since (M, p)
is complete partial metric space, from Lemma 2.8, (M, dm) is also complete.
Thus, there exists a u ∈M such that limn→∞ yn = u and limn→∞ dm(yn, u) =
0. Moreover, by Definition 2.6 (3) and equation (3.17), we have

p(u, u) = lim
n→∞

p(yn, u) = lim
n,m→∞

p(yn, ym) = 0.

Now, we consider the following two cases.

Case 1. Suppose S is continuous. Then u = limn→∞ yn = limn→∞ y2n =
limn→∞ y2n+1 = limn→∞ Sy2n = Su. Thus u is a fixed point of S.

Now, we have to prove that u is a fixed point of T . On the contrary, we
assume that Tu 6= u. From (3.1), we have

τ + F
(∫ p(Sy2n,Tu)

0
φ(t)dt

)
≤ F

(∫ M(y2n,u)

0
φ(t)dt

)
, (3.27)

where

M(y2n, u) = max
{
p(y2n, u),

1

2
[p(y2n, Sy2n) + p(u, Tu)],

1

3
[p(y2n, u) + p(y2n, Tu) + p(u, Sy2n)]

}
= max

{
p(y2n, u),

1

2
[p(y2n, y2n+1) + p(u, Tu)],

1

3
[p(y2n, u) + p(y2n, Tu) + p(u, y2n+1)]

}
. (3.28)

Taking the limit as n→∞ in (3.28) and using (3.18), we obtain

M(y2n, u)→ max
{

0,
p(u, Tu)

2
,
p(u, Tu)

3

}
=
p(u, Tu)

2
< p(u, Tu). (3.29)

Thus, from (3.27) and (3.29), we get

τ + F
(∫ p(u,Tu)

0
φ(t)dt

)
≤ F

(∫ p(u,Tu)

0
φ(t)dt

)
,

which is a contradiction since τ > 0. Thus, we have Tu = u.
Similarly, we find the same result when T is continuous.

Case 2. Now, we suppose that F is continuous. We can assume that there
exists a positive integer m1 ∈ N such that Syn+1 6= u (that is, p(yn, u) > 0)
for all n ≥ m1. Then from equation (3.1), we have

τ + F
(∫ p(Su,Ty2n+1)

0
φ(t)dt

)
≤ F

(∫ M(u,y2n+1)

0
φ(t)dt

)
, (3.30)
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where

M(u, y2n+1) = max
{
p(u, y2n+1),

1

2
[p(u, Su) + p(y2n+1, T y2n+1)],

1

3
[p(u, y2n+1) + p(u, Ty2n+1) + p(y2n+1, Su)]

}
= max

{
p(u, y2n+1),

1

2
[p(u, Su) + p(y2n+1, y2n+2)],

1

3
[p(u, y2n+1) + p(u, y2n+2) + p(y2n+1, Su)]

}
.(3.31)

Taking the limit as n→∞ in (3.31) and using (3.18), we obtain

M(u, y2n+1)→ max
{

0,
p(u, Su)

2
,
p(u, Su)

3

}
=
p(u, Su)

2
< p(u, Su). (3.32)

Now, from (3.30) and (3.32), we have

τ + F
(∫ p(Su,Ty2n+1)

0
φ(t)dt

)
≤ F

(∫ p(u,Su)

0
φ(t)dt

)
. (3.33)

Since F is continuous, passing to the limit as n→∞ in (3.33), we get

τ + F
(∫ p(Su,u)

0
φ(t)dt

)
≤ F

(∫ p(u,Su)

0
φ(t)dt

)
,

which is a contradiction since τ > 0. Therefore, we have u = Su and u is a
fixed point of S.

Now, we show that u is a fixed point of T . Using equation (3.1), we have

τ + F
(∫ p(u,Tu)

0
φ(t)dt

)
= τ + F

(∫ p(Su,Tu)

0
φ(t)dt

)
≤ F

(∫ M(u,u)

0
φ(t)dt

)
, (3.34)

where

M(u, u) = max
{
p(u, u),

1

2
[p(u, Su) + p(u, Tu)],

1

3
[p(u, u) + p(u, Tu) + p(u, Su)]

}
= max

{
p(u, u),

1

2
[p(u, u) + p(u, Tu)],

1

3
[p(u, u) + p(u, Tu) + p(u, u)]

}
.

Using equation (3.18), we have

M(u, u)→ max
{

0,
p(u, Tu)

2
,
p(u, Tu)

3

}
=
p(u, Tu)

2
< p(u, Tu). (3.35)
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From (3.34) and (3.35), we obtain

τ + F
(∫ p(u,Tu)

0
φ(t)dt

)
≤
(∫ p(u,Tu)

0
φ(t)dt

)
,

which is a contradiction since τ > 0. Hence, u = Tu. Thus u is a common
fixed point of S and T .

The proof of uniqueness of the common fixed point is same as that of The-
orem 3.1. This completes the proof. �

4. Consequences of theorem 3.1 and theorem 3.2

Corollary 4.1. Let (M, p) be a complete partial metric space and let T : M→
M be a self-mapping. Suppose that there exist F ∈ F and τ > 0 such that for
all x, y ∈M satisfying p(Tx, Ty) > 0, the following holds:

τ + F
(∫ p(Tx,Ty)

0
φ(t)dt

)
≤ F

(∫ M1(x,y)

0
φ(t)dt

)
,

where

M1(x, y) = max
{
p(x, y),

1

2
[p(x, Tx)+(y, Ty)],

1

3
[p(x, y)+p(x, Ty)+p(y, Tx)]

}
,

and φ : [0,∞) → [0,∞) is a Lebesgue integrable mapping which is summable
on each compact subset of [0,∞), nonnegative and for each ε > 0∫ ε

0
φ(t)dt > 0,

and F is continuous. Then T has a unique fixed point in M.

Corollary 4.2. Let (M, p) be a complete partial metric space and let T : M→
M be a self-mapping. Suppose that there exist F ∈ F and τ > 0 such that for
all x, y ∈M satisfying p(Tx, Ty) > 0, the following holds:

τ + F
(∫ p(Tx,Ty)

0
φ(t)dt

)
≤ F

(∫ p(x,y)

0
φ(t)dt

)
,

where φ : [0,∞)→ [0,∞) is a Lebesgue integrable mapping which is summable
on each compact subset of [0,∞), nonnegative and for each ε > 0∫ ε

0
φ(t)dt > 0,

and F is continuous. Then T has a unique fixed point in M.
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Corollary 4.3. Let (M, p) be a complete partial metric space and let T : M→
M be a self-mapping. Suppose that there exist F ∈ F and τ > 0 such that for
all x, y ∈M satisfying p(Tx, Ty) > 0, the following holds:

τ + F
(∫ p(Tx,Ty)

0
φ(t)dt

)
≤ F

(∫ 1
2
[p(x,Tx)+(y,Ty)]

0
φ(t)dt

)
,

where φ : [0,∞)→ [0,∞) is a Lebesgue integrable mapping which is summable
on each compact subset of [0,∞), nonnegative and for each ε > 0∫ ε

0
φ(t)dt > 0,

and F is continuous. Then T has a unique fixed point in M.

Corollary 4.4. Let (M, p) be a complete partial metric space and S, T : M→
M be two self-mappings. Suppose that there exist F ∈ F and τ > 0 such that
for all x, y ∈M satisfying p(Sx, Ty) > 0, the following holds:

τ + F
(∫ p(Sx,Ty)

0
φ(t)dt

)
≤ F

(∫ p(x,y)

0
φ(t)dt

)
,

where φ is as in Theorem 3.1. If the following hold:

(i) S or T is continuous or
(ii) F is continuous.

Then S and T have a unique common fixed point in M.

We give an example to support the result.

Example 4.5. LetM = [0, 1] and p(x, y) = max{x, y} for all x, y ∈M. Then
(M, p) complete partial metric space. Let S, T : M → M and φ : (0,∞) →
(0,∞) be defined by S(x) = x, T (x) = 0 and φ(t) = 2t for all t ≥ 0. Let
F : [0,∞) → R be given by F (α) = ln α. Then all conditions of Theorem
3.1 and the contractive condition (3.1) are satisfied for some τ > 0 and for
p(x, y) > 0.

If x > y, then we have

τ + F
(∫ p(Sx,Ty)

0
φ(t)dt

)
= τ + ln (x2) ≤ ln (x2)

= F
(∫ M(x,y)

0
φ(t)dt

)
.
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If x < y, then we have

τ + F
(∫ p(Sx,Ty)

0
φ(t)dt

)
= τ + ln (x2) < τ + ln (y2)

≤ ln (y2) = F
(∫ M(x,y)

0
φ(t)dt

)
.

Hence 0 ∈M is a common fixed point of S and T .

5. Conclusion

In this article, we establish some unique common fixed point theorems via
generalized integral type F -contraction in the setting of complete partial met-
ric spaces and give some consequences as corollaries of the established results.
Also we give an example to support the result. The results obtained in this
article generalize and extend several results from the existing literature.

Acknowledgments: The authors are grateful to the anonymous referee for
his careful reading and valuable suggestions to improve the manuscript.
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[19] S. Shukla and S. Radenović, Some common fixed point theorems for F -contraction type
mappings in 0-complete partial metric spaces, J. Math., 2013, Article ID 878730, 2013.

[20] A. Tomar, Giniswamy, C. Jeyanthi and P.G. Maheshwari, Coincidence and common
fixed point of F -contractions via CLRST property, Surveys Math. Appl., 11 (2016),
21–31.

[21] O. Vetro, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topology,
6(12) (2005), 229–240.

[22] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric
spaces, Fixed Point Theory Appl., 2012(94) (2012).

[23] P. Waszkiewicz, Partial metrizibility of continuous posets, Math. Struct. Comput. Sci.,
16(2) (2006), 359–372.

[24] M. Younis, D. Singh, D. Gopal, A. Goyal and M.S. Rathore, On applications of general-
ized F -contraction to differential equations, Nonlinear Funct. Anal. Appl., 24(1) (2019),
155-174.


