• Title/Summary/Keyword: General parameters

Search Result 2,362, Processing Time 0.031 seconds

Modeling and Its Modal Analysis for Distributed Parameter Frame Structures using Exact Dynamic Elements (엄밀한 동적 요소를 이용한 프레임 구조물의 모델링 및 모드 해석)

  • 김종욱;홍성욱
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.966-974
    • /
    • 1999
  • This paper introduces modeling and its modal analysis procedure for exact and closed form solution of in-plane vibrations of general Timoshenko frame structures using exact dynamic element method(EDEM). The derivation procedure of the exact system dynamic matrices for Timoshenko beam frames is described. A new modal analysis procedure is also proposed since the conventional modal analysis schemes are not adequate for the proposed, exact system dynamic matrix. The proposed method provides exact modal parameters as well as all kinds of closed form solutions for general frame structures. Two numerical examples are presented for validating and illustrating the proposed method. The numerical study proves that the proposed method is useful for dynamic analysis of frame structures.

  • PDF

Endovascular Closure Resolves Trimethylaminuria Caused by Congenital Portosystemic Shunts

  • Ponce-Dorrego, Mar?a Dolores;Garzon-Moll, Gonzalo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.6
    • /
    • pp.588-593
    • /
    • 2019
  • This study aimed to report three new cases of an association between two rare conditions, congenital portosystemic shunts (CPSS) and trimethylaminuria (TMAU), and the efficacy of endovascular closure of the CPSS for resolving TMAU. Between November 2014 and April 2017, 15 patients with CPSS were enrolled in this prospective study to assess the efficacy of percutaneous endovascular shunt closure. Three patients presented with clinical symptoms of TMAU that were confirmed by urine analysis of trimethylamine (TMA) and TMA n-oxide. One year after endovascular closure of the congenital portosystemic shunt, the same parameters were evaluated were obtained and the values were compared to the pretreatment values. The results indicated the disappearance of clinical symptoms of TMAU and normalization of the urine test parameters in two patients and no changes in one patient, who developed new portosystemic communications.

A Study on the Design Parameters of the PSC I-Type Girders for Long Span Bridges (장지간 교량을 위한 PSC-I형 거더의 단면 설계변수 연구)

  • 심종성;오홍섭;김민수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.13-22
    • /
    • 2000
  • In order to resolve the problem of increasing traffic entailed by the economic development, road system is reorganization and new highways are built, and long span bridges over 40m are being constructed in environmental and aesthetic considerations. Most long span bridges that are currently being constructed are in general steel box girder and preflex girder bridges; however these types of breiges are less efficiency than PSC I-type girder bridges in terms of construction cost and maintenance. Therefore, in these study, structural efficiency of PSC I-type girders based on section parameters, concrete compressive strength and other design parameter is observed to develope new PSC I-type girder for long span bridges. As a results of analysis, most important design parameters that control the stress of the girder are found to be the top flange width and the height of girder. In this light, the relationship between the two variables is determined and cross-section details of the girder that most appropriates for the long span bridges are proposed. The use of high strength concrete appears to increase the general design span however the increase rate of the span from increasing concrete ultimate strength appears to be reduced depending on the span. Also, the optimal girder spacing is determined through the parameter studies of design span using the proposed girder.

EVALUATION OF THE MEASUREMENT NOISE AND THE SYSTEMATIC ERRORS FOR THE KOMPSAT-1 GPS NAVIGATION SOLUTIONS

  • Kim Hae-Dong;Kim Eun-Kyou;Choi Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.278-280
    • /
    • 2004
  • GPS Navigation Solutions are used for operational orbit determination for the KOMPSAT-1 spacecraft. GPS point position data are definitely affected by systematic errors as well as noise. Indeed, the systematic error effects tend to be longer term since the GPS spacecrafts have periods of 12 hours. And then, the overlap method of determining orbit accuracy is always optimistic because of the presence of systematic errors with longer term effects. In this paper, we investigated the measurement noise and the system error for the KOMPSAT-l GPS Navigation Solutions. To assess orbit accuracy with this type of data, we use longer data arcs such as 5-7 days instead of 30 hour data arc. For this assessment, we should require much more attention to drag and solar radiation drag parameters or even general acceleration parameters in order to assess orbit accuracy with longer data arcs. Thus, the effects of the consideration of the drag, solar radiation drag, and general acceleration parameters were also investigated.

  • PDF

General SPICE Modeling Procedure for Double-Gate Tunnel Field-Effect Transistors

  • Najam, Syed Faraz;Tan, Michael Loong Peng;Yu, Yun Seop
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.115-121
    • /
    • 2016
  • Currently there is a lack of literature on SPICE-level models of double-gate (DG) tunnel field-effect transistors (TFETs). A DG TFET compact model is presented in this work that is used to develop a SPICE model for DG TFETs implemented with Verilog-A language. The compact modeling approach presented in this work integrates several issues in previously published compact models including ambiguity about the use of tunneling parameters Ak and Bk, and the use of a universal equation for calculating the surface potential of DG TFETs in all regimes of operation to deliver a general SPICE modeling procedure for DG TFETs. The SPICE model of DG TFET captures the drain current-gate voltage (Ids-Vgs) characteristics of DG TFET reasonably well and offers a definite computational advantage over TCAD. The general SPICE modeling procedure presented here could be used to develop SPICE models for any combination of structural parameters of DG TFETs.

GLOBAL THRESHOLD DYNAMICS IN HUMORAL IMMUNITY VIRAL INFECTION MODELS INCLUDING AN ECLIPSE STAGE OF INFECTED CELLS

  • ELAIW, A.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.137-170
    • /
    • 2015
  • In this paper, we propose and analyze three viral infection models with humoral immunity including an eclipse stage of infected cells. The incidence rate of infection is represented by bilinear incidence and saturated incidence in the first and second models, respectively, while it is given by a more general function in the third one. The neutralization rate of viruses is giv0en by bilinear form in the first two models, while it is given by a general function in the third one. For each model, we have derived two threshold parameters, the basic infection reproduction number which determines whether or not a chronic-infection can be established without humoral immunity and the humoral immune response activation number which determines whether or not a chronic-infection can be established with humoral immunity. By constructing suitable Lyapunov functions we have proven the global asymptotic stability of all equilibria of the models. For the third model, we have established a set of conditions on the threshold parameters and on the general functions which are sufficient for the global stability of the equilibria of the model. We have performed some numerical simulations for the third model with specific forms of the incidence and neutralization rates and have shown that the numerical results are consistent with the theoretical results.

INCORPORATING PRIOR BELIEF IN THE GENERAL PATH MODEL: A COMPARISON OF INFORMATION SOURCES

  • Coble, Jamie;Hines, J. W esley
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.773-782
    • /
    • 2014
  • The general path model (GPM) is one approach for performing degradation-based, or Type III, prognostics. The GPM fits a parametric function to the collected observations of a prognostic parameter and extrapolates the fit to a failure threshold. This approach has been successfully applied to a variety of systems when a sufficient number of prognostic parameter observations are available. However, the parametric fit can suffer significantly when few data are available or the data are very noisy. In these instances, it is beneficial to include additional information to influence the fit to conform to a prior belief about the evolution of system degradation. Bayesian statistical approaches have been proposed to include prior information in the form of distributions of expected model parameters. This requires a number of run-to-failure cases with tracked prognostic parameters; these data may not be readily available for many systems. Reliability information and stressor-based (Type I and Type II, respectively) prognostic estimates can provide the necessary prior belief for the GPM. This article presents the Bayesian updating framework to include prior information in the GPM and compares the efficacy of including different information sources on two data sets.

Stress Fields for the V-notched Crack and Fracture Parameters by Boundary Collocation Method (V-노치균열의 응력장과 경계배치법에 의한 파괴변수)

  • Pae, Jung-Pae;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.66-76
    • /
    • 2003
  • The arbitrary V-notched crack problem is considered. The general expressions for the stress components on this problem are obtained as explicit series forms composed of independent unknown coefficients which are denoted by coefficients of eigenvector. For this results eigenvalue equation is performed first through introducing complex stress functions and applying the traction free boundary conditions. Next solving this equation, eigenvalues and corresponding eigenvectors are obtained respectively, and finally inserting these results into stress components, the general equations are obtained. These results are also shown to be applicable to the symmetric V-notched crack or straight crack. It can be shown that this solutions are composed of the linear combination of Mode I and Mode II solutions which are obtained from different characteristic equations, respectively. Through performing asymptotic analysis for stresses, the stress intensity factor is given as a closed form equipped with the unknown coefficients of eigenvector. In order to calculate the unknown coefficients. based on these general explicit equations, numerical programming using the overdetermined boundary collocation method which is algorithmed originally by Carpenter is also worked out. As this programming requires the input data, the commercial FE analysis for stresses is performed. From this study, for some V-notched problems, unknown coefficients can be calculated numerically and also fracture parameters are determined.

A Study on the Characteristics of Gait in Patients with Chronic Low Back Pain (만성요통환자의 보행특성에 관한 연구)

  • Kim, Kyoung;Ko, Joo-Yeon;Lee, Sung-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.79-85
    • /
    • 2009
  • Purpose: This study examined the characteristics of gait in patients with chronic low back pain. Methods: The subjects were out-patients suffering from chronic low back pain at the department of physical therapy, B hospital in Seoul. Gait analysis was performed by dividing the subjects into two groups. The study and control group comprised 15 chronic low back pain patients and 14 healthy people, respectively. Gait analysis was performed using a VICON 512 Motion Analysis System to obtain the spatio-temporal and kinematic parameters. Results: First, there was a significant difference in the spatio-temporal parameters between the two groups (p<0.05). Second, the study group showed significant differences in the kinematic parameters during the stance phase (p<0.05). Third, there were significant differences in kinematic parameters in the study group during the swing phase (p<0.05). Conclusion: The gait pattern of patients with chronic low back pain is characterized by more rigid patterns. Compared to the control group, there was a decrease in the spatio-temporal parameters and kinematic parameters in patients with chronic low back pain. These findings are expected to play a role as basic data and to form a rehabilitation program for low back pain patients.

  • PDF

Proposed surface modeling for slip resistance of the shoe-floor interface

  • Kim, In-Ju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.515-528
    • /
    • 1995
  • Slips and falls are the major causes of the pedestrian injuries in the industry and the general community throughout the world. With the awareness of these problems, the friction coefficients of the interface between floorings and footwear have been measured for the evaluation of slip resistant properties. During this measurement process, the surface texture has been shown to be substantially effective to the friction mechanism between shoe heels and floor surfaces under various types of walking environment. Roughness, either of the floor surface or shoe heels, provides the necessary drainage spaces. This roughness can be designed into the shoe heel but this is inadequate in some cases, especially a wear. Therefore, it is essential that the proper roughness for the floor surface coverings should be provided. The phenomena that observed at the interface between a sliding elastomer and a rigid contaminated floor surface are very diverse and combined mechanisms. Besides, the real surface geometry is quite complicate and the characteristics of both mating surfaces are continuously changing in the process of running-in so that a finite number of surface parameters can not provide a proper description of the complex and peculiar shoe - floor contact sliding mechanism. It is hypothesised that the interface topography changes are mainly occurred in the shoe heel surfaces, because the general property of the shoe is soft in the face of hardness compared with the floor materials This point can be idealized as sliding of a soft shoe heel over an array of wedge-shaped hard asperities of floor surface. Therefore, it is considered that a modelling for shoe - floor contact sliding mechanism is mainly depended upon the surface topography of the floor counterforce. With the model development, several surface parameters were measured and tested to choose the best describing surface parameters. As the result, the asperity peak density (APD) of the floor surface was developed as one of the best describing parameters to explain the ambiguous shoe - floor interface friction mechanism. It is concluded that the floor surface should be continuously monitored with the suitable surface parameters and kept the proper level of roughness to maintain the footwear slip resistance. This result can be applied to the initial stage of design for the floor coverings.

  • PDF