• Title/Summary/Keyword: Gene regulation

Search Result 2,196, Processing Time 0.026 seconds

Expression of Recombinant Human Growth Hormone in a Soluble Form in Escherichia coli by Slowing Down the Protein Synthesis Rate

  • Koo, Tai-Young;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.579-585
    • /
    • 2007
  • Formation of inclusion bodies is usually observed when foreign proteins are overexpressed in E. coli. The formation of inclusion bodies might be prevented by lowering the rate of protein synthesis, and appropriate regulation of the protein expression rate may lead to the soluble expression. In this study, human growth hormone (rhGH) was expressed in a soluble form by slowing down the protein synthesis rate, which was controlled in the transcriptional and translational levels. The transcriptional level was controlled by the regulation of the amount of RNA polymerase specific to the promoter in front of the rhGH gene. For lowering the rate of translation, the T7 transcription terminator-deleted vector was used to synthesize the longer mRNA of the target gene because the longer mRNA is expected to reduce the availability of tree ribosomes. In both methods, the percentage of soluble expression increased when the expression rate slowed down, and more than 93% of rhGH expressed was a soluble form in the T7 transcription terminator-deleted expression system.

Elucidation of the Regulation of Ethanol Catabolic Genes and ptsG Using a glxR and Adenylate Cyclase Gene (cyaB) Deletion Mutants of Corynebacterium glutamicum ATCC 13032

  • Subhadra, Bindu;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1683-1690
    • /
    • 2013
  • The cyclic AMP receptor protein (CRP) homolog, GlxR, controls the expression of several genes involved in the regulation of diverse physiological processes in Corynebacterium glutamicum. In silico analysis has revealed the presence of glxR binding sites upstream of genes ptsG, adhA, and ald, encoding glucose-specific phosphotransferase system protein, alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH), respectively. However, the involvement of the GlxR-cAMP complex on the expression of these genes has been explored only in vitro. In this study, the expressions of ptsG, adhA, and ald were analyzed in detail using an adenylate cyclase gene (cyaB) deletion mutant and glxR deletion mutant. The specific activities of ADH and ALDH were increased in both the mutants in glucose and glucose plus ethanol media, in contrast to the wild type. In accordance, the promoter activities of adhA and ald were derepressed in the cyaB mutant, indicating that glxR acts as a repressor of adhA. Similarly, both the mutants exhibited derepression of ptsG regardless of the carbon source. These results confirm the involvement of GlxR on the expression of important carbon metabolic genes; adhA, ald, and ptsG.

Up-regulation of Galectin-3 in HIV-1 tat-transfected Cells

  • Yu Hak Sun;Kim KoanHoi
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.186-191
    • /
    • 2005
  • Previous studies have demonstrated that expression of galectin-3, a member of family of beta-galactoside-binding animal lectin, is associated with pathological conditions including cancer, atherosclerosis, and viral infection. An increase of this lectin has been observed after infection by Kirsten murine sarcoma, human T lymphotropic virus-l (HTLV-l), and human immunodeficiency virus-l (HIV-l). Viral transactivation protein Tax of HTLV-l mediates the increase in the lectin. In case of HIV-1, there are evidences that Tat would be related with increase in galectin-3. We investigated whether Tat directly induced galectin-3 expression in cells. We found that HIV-l tat gene activated galectin-3 promoter in RAW264.7 cells. To demonstrate direct induction of galectin-3 by HIV-l tat, we transfected the tat into a rabbit smooth muscle cell line (Rb1) and obtained RblTatCl-2, a clone of cell stably transfected with tat gene. The Rb1TatCl-2 cells exhibited activation of LTR promoter and up-regulation of galectin-3 transcript as well as protein. Our results indicate that HIV-l tat alone is sufficient to induce the expression of galectin-3. The Rb1TatCl-2 cells could be valuable for study of the effect of HIV-1 tat on expression of cellular genes.

Modulation of a Fungal Signaling by Hypovirus

  • Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.30-33
    • /
    • 2003
  • The chestnut blight fungus, Cryphonectria parasitica, and its hypovirus aye a useful model system in the study of the mechanisms of hypoviral infection and its consequences, such as a biological control of fungal pathogens. Strains containing the double-stranded (ds) RNA viruses Cryphonectria hypovirus 1 show characteristic symptoms of hypovirulence and display hypovirulence-associated changes, such as reduced pigmentation, sporulation, laccase production, and oxalate accumulation. Interestingly, symptoms caused by hypoviral infection appear to be the result of aberrant expression of a number of specific genes in the hypovirulent strain. Several viral regulated fungal genes are identified as cutinase gene, Lac1, which encodes an extracellular laccase, Crp, which encodes an abundant tissue-specific cell-surface hydrophobin that mediates physical strength, and Mf2/1 and Mf2/2, which encode pheromone genes involved in poor sporulation in the presence of hypo-virus. Since the phenotypic changes in the fungal host are pleiotropic, although coordinated and specific, it has been suggested that the hypovirus disturbs one or several regulatory pathways (Nuss,1996). Accordingly, several studies have shown the implementation of a signal transduction pathway during viral symptom development. Although further studies are required, hypovirulence and its associated symptom development due to the hypoviral regulation of a fungal hetero-trimeric G-protein have been suggested. In addition, recent studies have shown the presence of a novel protein kinase gene cppk1 and its transcriptional upregulation by hypovirus. In this review, the presence of important components in signal transduction pathway, their putative biological function, and viral-specific regulation will be addressed.

Multiple Sequence Aligmnent Genetic Algorithm (진화 알고리즘을 사용한 복수 염기서열 정렬)

  • Kim, Jin;Song, Min-Dong;Choi, Hong-Sik;Chang, Yeon-Ah
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 1999
  • Multiple Sequence Alignment of DNA and protem sequences is a imnport'mt tool in the study of molecular evolution, gene regulation. and prolein suucture-function relationships. Progressive pairwise alignment method generates multiple sequence alignment fast but not necessarily with optimal costs. Dynamic programming generates multiple sequence alig~~menl with optimal costs in most cases but long execution time. In this paper. we suggest genetlc algorithm lo improve the multiple sequence alignment generated from the cnlent methods, describe the design of the genetic algorithm, and compare the multiple sequence alignments from 0111 method and current methods.

  • PDF

HIF-1α-Dependent Gene Expression Program During the Nucleic Acid-Triggered Antiviral Innate Immune Responses

  • Hong, Sun Woo;Yoo, Jae Wook;Kang, Hye Suk;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2009
  • Recent studies suggest a novel role of $HIF-1{\alpha}$ under nonhypoxic conditions, including antibacterial and antiviral innate immune responses. However, the identity of the pathogen-associated molecular pattern which triggers $HIF-1{\alpha}$ activation during the antiviral response remains to be identified. Here, we demonstrate that cellular administration of double-stranded nucleic acids, the molecular mimics of viral genomes, results in the induction of $HIF-1{\alpha}$ protein level as well as the increase in $HIF-1{\alpha}$ target gene expression. Whole-genome DNA microarray analysis revealed that double-stranded nucleic acid treatment triggers induction of a number of hypoxia-inducible genes, and induction of these genes are compromised upon siRNA-mediated $HIF-1{\alpha}$ knock-down. Interestingly, $HIF-1{\alpha}$ knock-down also resulted in down-regulation of a number of genes involved in antiviral innate immune responses. Our study demonstrates that $HIF-1{\alpha}$ activation upon nucleic acid-triggered antiviral innate immune responses plays an important role in regulation of genes involved in not only hypoxic response, but also immune response.

RNA Binding Protein-Mediated Post-Transcriptional Gene Regulation in Medulloblastoma

  • Bish, Rebecca;Vogel, Christine
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.357-364
    • /
    • 2014
  • Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma.

Regulation of SoxR, the superoxide-sensory regulator in Escherichia coli.

  • Lee Joon-Hee;Koo Mi-Sun;Yeo Won-Sik;Roe Jung-Hye
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.24-31
    • /
    • 2000
  • In order to find out SoxR-reducing system in E. coli, we generated Tn10-insertion mutants and screened for constitutive expression of SoxS in a soxS-lacZ fusion strain. One mutation was mapped in rseB, a gene in rseABC (Regulation of SigmaE) operon. The constitutive soxS-expressing phenotype was due to the polar effect on the downstream gene, rseC. RseC is likely to function as a component of SoxR reduction system because SoxR was kept in oxidized form to activate soxS expression in rseC mutant. RseC is an integral membrane protein with an N-terminal cysteine-rich domain in the cytoplasm. The functionally critical cysteines were determined by substitution mutagenesis. The truncated N-terminal domain of RseC reduced the soxS transcription by $50\%$ as judged by in vitro transcription assay. Currently RseC is believed to be a reducing factor for SoxR. However, the mechanism for the reduction needs further investigation.

  • PDF

CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach

  • Kamikubo, Yasuhiko
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.198-202
    • /
    • 2020
  • Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.

SETDB1 regulates SMAD7 expression for breast cancer metastasis

  • Ryu, Tae Young;Kim, Kwangho;Kim, Seon-Kyu;Oh, Jung-Hwa;Min, Jeong-Ki;Jung, Cho-Rok;Son, Mi-Young;Kim, Dae-Soo;Cho, Hyun-Soo
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.139-144
    • /
    • 2019
  • Breast cancer (BRC) is the most invasive cancer in women. Although the survival rate of BRC is gradually increasing due to improved screening systems, development of novel therapeutic targets for inhibition of BRC proliferation, metastasis and recurrence have been constantly needed. Thus, in this study, we identified overexpression of SETDB1 (SET Domain Bifurcated 1), a histone methyltransferase, in RNA-seq data of BRC derived from TCGA portal. In Gene Ontology (GO) analysis, cell migration-related GO terms were enriched, and we confirmed down-regulation of cell migration/invasion and alteration of EMT /MET markers after knockdown of SETDB1. Moreover, gene network analysis showed that SMAD7 expression is regulated by SETDB1 levels, indicating that up-regulation of SMAD7 by SETDB1 knockdown inhibited BRC metastasis. Therefore, development of SETDB1 inhibitors and functional studies may help develop more effective clinical guidelines for BRC treatment.