DOI QR코드

DOI QR Code

CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach

  • Kamikubo, Yasuhiko (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University)
  • Received : 2019.11.14
  • Accepted : 2019.12.12
  • Published : 2020.02.29

Abstract

Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.

Keywords

References

  1. Bando, T. and Sugiyama, H. (2006). Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole-imidazole polyamides. Acc. Chem. Res. 39, 935-944. https://doi.org/10.1021/ar030287f
  2. Best, T.P., Edelson, B.S., Nickols, N.G., and Dervan, P.B. (2003). Nuclear localization of pyrrole-imidazole polyamide-fluorescein conjugates in cell culture. Proc. Natl. Acad. Sci. U. S. A. 100, 12063-12068. https://doi.org/10.1073/pnas.2035074100
  3. Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Nakagawa, M., Olsson, A., Wunderlich, M., Link, K.A., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J. Clin. Invest. 123, 3876-3888. https://doi.org/10.1172/JCI68557
  4. Hyde, R.K., Kamikubo, Y., Anderson, S., Kirby, M., Alemu, L., Zhao, L., and Liu, PP. (2010). Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Blood 115, 1433-1443. https://doi.org/10.1182/blood-2009-06-227413
  5. Hyde, R.K., Zhao, L., Alemu, L., and Liu, P.P. (2015). Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice. Leukemia 29, 1771-1778. https://doi.org/10.1038/leu.2015.58
  6. Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95. https://doi.org/10.1038/nrc3877
  7. Kamikubo, Y. (2018). Genetic compensation of RUNX family transcription factors in leukemia. Cancer Sci. 109, 2358-2363. https://doi.org/10.1111/cas.13664
  8. Kamikubo, Y., Hyde, R.K., Zhao, L., Alemu, L., Rivas, C., Garrett, L.J., and Liu, P.P. (2013). The C-terminus of $CBF\beta$-SMMHC is required to induce embryonic hematopoietic defects and leukemogenesis. Blood 121, 638-642. https://doi.org/10.1182/blood-2012-06-434688
  9. Kamikubo, Y., Zhao, L., Wunderlich, M., Corpora, T., Hyde, R.K., Paul, T.A., Kundu, M., Garrett, L., Compton, S., Huang, G., et al. (2010). Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1. Cancer Cell 17, 455-468. https://doi.org/10.1016/j.ccr.2010.03.022
  10. Liu, P., Tarle, S.A., Hajra, A., Claxton, D.F., Marlton, P., Freedman, M., Siciliano, M.J., and Collins, F.S. (1993). Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 261, 1041-1044. https://doi.org/10.1126/science.8351518
  11. Liu, P.P., Hajra, A., Wijmenga, C., and Collins, F.S. (1995). Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood 85, 2289-2302. https://doi.org/10.1182/blood.V85.9.2289.bloodjournal8592289
  12. Lukasik, S.M., Zhang, L., Corpora, T., Tomanicek, S., Li, Y., Kundu, M., Hartman, K., Liu, P.P., Laue, T.M., Biltonen, R.L., et al. (2002). Altered affinity of CBF beta-SMMHC for Runx1 explains its role in leukemogenesis. Nat. Struct. Biol. 9, 674-679. https://doi.org/10.1038/nsb831
  13. Mitsuda, Y., Morita, K., Maeda, S., Kashiwazaki, G., Taniguchi, J., Bando, T., Hirata, M., Kataoka, T.R., Muto, M., Kaneda, Y., et al. (2018). RUNX1 positively regulates ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells. Sci. Rep. 8, 6423. https://doi.org/10.1038/s41598-018-24969-w
  14. Morita, K., Maeda, S., Suzuki, K., Kiyose, H., Taniguchi, J., Liu, P.P., Sugiyama, H., Adachi, S., and Kamikubo, Y. (2017b). Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately-attenuated RUNX1 expressions. Blood Adv. 1, 1440-1451. https://doi.org/10.1182/bloodadvances.2017007591
  15. Morita, K., Noura, M., Tokushige, C., Maeda, S., Kiyose, H., Kashiwazaki, G., Taniguchi, J., Bando, T., Yoshida, K., Ozaki, T., et al. (2017c). Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells. Sci. Rep. 7, 16604. https://doi.org/10.1038/s41598-017-16799-z
  16. Morita, K., Suzuki, K., Maeda, S., Matsuo, A., Mitsuda, Y., Tokushige, C., Kashiwazaki, G., Taniguchi, J., Maeda, R., Noura, M., et al. (2017a). Genetic regulation of the RUNX transcription factor family has antitumor effects. J. Clin. Invest. 127, 2815-2828. https://doi.org/10.1172/JCI91788
  17. Morita, K., Tokushige, C., Maeda, S., Kiyose, H., Noura, M., Iwai, A., Yamada, M., Kashiwazaki, G., Taniguchi, J., Bando, T., et al. (2018). RUNX transcription factors potentially control E-selectin expressions in the vascular niche of mice bone marrow. Blood Adv. 2, 509-515. https://doi.org/10.1182/bloodadvances.2017009324
  18. Sood, R., Kamikubo, Y., and Liu, P. (2017). Role of RUNX1 in hematological malignancies. Blood 129, 2070-2082. https://doi.org/10.1182/blood-2016-10-687830
  19. Tahirov, T.H., Inoue-Bungo, T., Morii, H., Fujikawa, A., Sasaki, M., Kimura, K., Shiina, M., Sato, K., Kumasaka, T., Yamamoto, M., et al. (2001). Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 104, 755-767. https://doi.org/10.1016/S0092-8674(01)00271-9
  20. Trauger, J.W., Baird, E.E., and Dervan, P.B. (1996). Recognition of DNA by designed ligands at subnanomolar concentrations. Nature 382, 559-561. https://doi.org/10.1038/382559a0
  21. Warren, A.J., Bravo, J., Williams, R.L., and Rabbitts, T.H. (2000). Structural basis for the heterodimeric interaction between the acute leukaemiaassociated transcription factors AML1 and CBFbeta. EMBO J. 19, 3004-3015. https://doi.org/10.1093/emboj/19.12.3004
  22. Yan, J., Liu, Y., Lukasik, S.M., Speck, N.A., and Bushweller, J.H. (2004). CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat. Struct. Mol. Biol. 11, 901-906. https://doi.org/10.1038/nsmb819

Cited by

  1. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? vol.12, 2020, https://doi.org/10.3389/fimmu.2021.701924
  2. Expression patterns and prognostic value of RUNX genes in kidney cancer vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-94294-2