• Title/Summary/Keyword: Gene expression dynamics

Search Result 45, Processing Time 0.027 seconds

Inhibition of LSD1 phosphorylation alleviates colitis symptoms induced by dextran sulfate sodium

  • Oh, Chaeyoon;Jeong, Jiyeong;Oh, Se Kyu;Baek, Sung Hee;Kim, Keun Il
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.385-390
    • /
    • 2020
  • Inflammatory Bowel Disease is caused by an acute or chronic dysfunction of the mucosal inflammatory system in the intestinal tract. In line with the results of our previous study, wherein we found that the PKCα-LSD1-NF-κB signaling plays a critical role in the prolonged activation of the inflammatory response, we aimed to investigate the effect of signaling on colitis in the present study. Lsd1 S112A knock-in (Lsd1SA/SA) mice, harboring a deficiency in phosphorylation by PKCα, exhibited less severe colitis symptoms and a relatively intact colonic epithelial lining in dextran sulfate sodium (DSS)-induced colitis models. Additionally, a reduction in pro-inflammatory gene expression and immune cell recruitment into damaged colon tissues in Lsd1SA/SA mice was observed upon DSS administration. Furthermore, LSD1 inhibition alleviated colitis symptoms and reduced colonic inflammatory responses. Both LSD1 phosphorylation and its activity jointly play a role in the progression of DSS-induced colitis. Therefore, the inhibition of LSD1 activity could potentially protect against the colonic inflammatory response.

Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization

  • Cattaneo, Matteo;Morozumi, Yuichi;Perazza, Daniel;Boussouar, Faycal;Jamshidikia, Mahya;Rousseaux, Sophie;Verdel, Andre;Khochbin, Saadi
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.851-856
    • /
    • 2014
  • ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations.

Respiratory Syncytial Virus (RSV) Modulation at the Virus-Host Interface Affects Immune Outcome and Disease Pathogenesis

  • Tripp, Ralph A.
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.163-167
    • /
    • 2013
  • The dynamics of the virus-host interface in the response to respiratory virus infection is not well-understood; however, it is at this juncture that host immunity to infection evolves. Respiratory viruses have been shown to modulate the host response to gain a replication advantage through a variety of mechanisms. Viruses are parasites and must co-opt host genes for replication, and must interface with host cellular machinery to achieve an optimal balance between viral and cellular gene expression. Host cells have numerous strategies to resist infection, replication and virus spread, and only recently are we beginning to understand the network and pathways affected. The following is a short review article covering some of the studies associated with the Tripp laboratory that have addressed how respiratory syncytial virus (RSV) operates at the virus-host interface to affects immune outcome and disease pathogenesis.

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.

Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows

  • Marina V. Pozovnikova;Viktoria B. Leibova;Olga V. Tulinova;Elena A. Romanova;Artem P. Dysin;Natalia V. Dementieva;Anastasiia I. Azovtseva;Sergey E. Sedykh
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.965-981
    • /
    • 2024
  • Objective: Milk composition varies considerably and depends on paratypical, genetic, and epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of the key tools of epigenetic control because of their ability to regulate gene expression at the post-transcriptional level. We compared the relative expression levels of miR-106b, miR-191, and miR-30d in milk to demonstrate the relationship between the content of these miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle. Methods: Milk fat, protein, and casein contents were determined in the obtained samples, as well as the content of the main fatty acids (g/100 g milk), including: saturated acids, such as myristic (C14:0), palmitic (C16:0), and stearic (C18:0) acids; monounsaturated acids, including oleic (C18:1) acid; as well as long-, medium- and short-chain, polyunsaturated, and trans fatty acids. Real-time stem-loop one-tube reverse transcription polymerase chain reaction with TaqMan probes was used to measure the miRNA expression levels. Results: The miRNA expression levels in milk samples were found to be decreased in the first two months in Holstein breed, and in the first four months in Ayrshire breed. Correlation analysis did not reveal any dependence between changes in the expression level of miRNA and milk fat content, but showed a multidirectional relationship with individual milk fatty acids. Positive associations between the expression levels of miR-106b and miR-30d and protein and casein content were found in the Ayrshire breed. Receiver operating characteristic curve analysis showed that miR-106b and miR-30d expression levels can cause changes in fatty acid and protein composition of milk in Ayrshire cows, whereas miR-106b expression level determines the fatty acid composition in Holsteins. Conclusion: The data obtained in this study showed that miR-106b, miR-191, and miR-30d expression levels in milk samples have peculiarities associated with breed affiliation and the lactation period.

Temporal Expression of RNA Polymerase II in Porcine Oocytes and Embryos

  • Oqani, Reza;Lee, Min Gu;Tao, Lin;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.237-241
    • /
    • 2012
  • Embryonic genome activation (EGA) is the first major transition that occurs after fertilization, and entails a dramatic reprogramming of gene expression that is essential for continued development. Although it has been suggested that EGA in porcine embryos starts at the four-cell stage, recent evidence indicates that EGA may commence even earlier; however, the molecular details of EGA remain incompletely understood. The RNA polymerase II of eukaryotes transcribes mRNAs and most small nuclear RNAs. The largest subunit of RNA polymerase II can become phosphorylated in the C-terminal domain. The unphosphorylated form of the RNA polymerase II largest subunit C-terminal domain (IIa) plays a role in initiation of transcription, and the phosphorylated form (IIo) is required for transcriptional elongation and mRNA splicing. In the present study, we explored the nuclear translocation, nuclear localization, and phosphorylation dynamics of the RNA polymerase II C-terminal domain in immature pig oocytes, mature oocytes, two-, four-, and eight-cell embryos, and the morula and blastocyst. To this end, we used antibodies specific for the IIa and IIo forms of RNA polymerase II to stain the proteins. Unphosphorylated RNA polymerase II stained strongly in the nuclei of germinal vesicle oocytes, whereas the phosphorylated form of the enzyme was confined to the chromatin of prophase I oocytes. After fertilization, both unphosphorylated and phosphorylated RNA polymerase II began to accumulate in the nuclei of early stage one-cell embryos, and this pattern was maintained through to the blastocyst stage. The results suggest that both porcine oocytes and early embryos are transcriptionally competent, and that transcription of embryonic genes during the first three cell cycles parallels expression of phosphorylated RNA polymerase II.

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain

  • Park, Chan-Woo;Lee, Sung-Min;Yoon, Ki-Jun
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.551-564
    • /
    • 2020
  • Proper development of the nervous system is critical for its function, and deficits in neural development have been implicated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developing brain. Especially, recent discoveries have been showing that various mRNA chemical modifications can affect RNA metabolism including decay, transport, splicing, and translation in cell type- and tissue-specific manner, leading to the emergence of the field of epitranscriptomics. Moreover, accumulating evidences showed that certain types of RNA modifications are predominantly found in the developing brain and their dysregulation disrupts not only the developmental processes, but also neuronal activities, suggesting that epitranscriptomic mechanisms play critical post-transcriptional regulatory roles in development of the brain and etiology of brain disorders. Here, we review recent advances in our understanding of molecular regulation on transcriptome plasticity by RNA modifications in neurodevelopment and how alterations in these RNA regulatory programs lead to human brain disorders.

Functional Analysis of ESTs from the 14-year Root of Korean Ginseng

  • Yang, Deok-Chun;In, Jun-Gyo;Kim, Moo-Sung;Jeon, Jong-Seong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.125-125
    • /
    • 2003
  • To assist genetic study of the root development in Panax ginseng, which is one of the most important medicinal plant, expressed sequence tags (EST) analysis was carried out. We constructed a cDNA library using the 14-year ginseng root. Partial sequences were obtained from 2,975 clone. The ESTs could be clustered into 1,991 (70.2%) non-redundant groups. Similarity search of the non-redundant ESTs against public non-redundant databases of both protein and DNA indicated that 1,553 groups show similarity to genes of blown function. These ESTs clones were divided into sixteen categories depending upon gene function. The most abundant transcripts were ribonuclease 1 (67) and ribonuclease 2 (65). Our extensive EST analysis of genes expressed in 14-year ginseng root not only contributes to the understanding of the dynamics of genome expression patterns in root organ but also adds data to the reperoire of all genomic genes.

  • PDF

Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells

  • Hong, Chang-Pyo;Choe, Moon-Kyung;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.145-152
    • /
    • 2012
  • Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq) histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE)-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac) were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.