Browse > Article
http://dx.doi.org/10.4110/in.2013.13.5.163

Respiratory Syncytial Virus (RSV) Modulation at the Virus-Host Interface Affects Immune Outcome and Disease Pathogenesis  

Tripp, Ralph A. (Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia)
Publication Information
IMMUNE NETWORK / v.13, no.5, 2013 , pp. 163-167 More about this Journal
Abstract
The dynamics of the virus-host interface in the response to respiratory virus infection is not well-understood; however, it is at this juncture that host immunity to infection evolves. Respiratory viruses have been shown to modulate the host response to gain a replication advantage through a variety of mechanisms. Viruses are parasites and must co-opt host genes for replication, and must interface with host cellular machinery to achieve an optimal balance between viral and cellular gene expression. Host cells have numerous strategies to resist infection, replication and virus spread, and only recently are we beginning to understand the network and pathways affected. The following is a short review article covering some of the studies associated with the Tripp laboratory that have addressed how respiratory syncytial virus (RSV) operates at the virus-host interface to affects immune outcome and disease pathogenesis.
Keywords
RSV; Virus-host interface; Disease intervention;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cate, T. R. 1998. Impact of influenza and other community- acquired viruses. Semin. Respir. Infect. 13: 17-23.
2 Greenberg, S. B. 2007. Rhinovirus and coronavirus infections. Semin. Respir. Crit. Care Med. 28: 182-192.   DOI
3 Heikkinen, T. 2000. Role of viruses in the pathogenesis of acute otitis media. Pediatr. Infect. Dis. J. 19: S17-22.   DOI
4 Mahony, J. B., A. Petrich, and M. Smieja. 2011. Molecular diagnosis of respiratory virus infections. Crit. Rev. Clin. Lab. Sci. 48: 217-249.   DOI
5 See, H. and P. Wark. 2008. Innate immune response to viral infection of the lungs. Paediatr. Respir. Rev. 9: 243-250.   DOI
6 Bartlett, J. A., A. J. Fischer, and P. B. McCray, Jr. 2008. Innate immune functions of the airway epithelium. Contrib. Microbiol. 15: 147-163.
7 Oshansky, C. M., W. Zhang, E. Moore, and R. A. Tripp. 2009. The host response and molecular pathogenesis associated with respiratory syncytial virus infection. Future Microbiol. 4: 279-297.   DOI
8 Schwarze, J. and K. J. Mackenzie. 2013. Novel insights into immune and inflammatory responses to respiratory viruses. Thorax. 68: 108-110.   DOI
9 Sajjan, U. S. 2013. Susceptibility to viral infections in chronic obstructive pulmonary disease: role of epithelial cells. Curr. Opin. Pulm. Med. 19: 125-132.   DOI
10 Averett, D. R., S. P. Fletcher, W. Li, S. E. Webber, and J. R. Appleman. 2007. The pharmacology of endosomal TLR agonists in viral disease. Biochem. Soc. Trans. 35: 1468-1472.   DOI
11 Sandor, F. and M. Buc. 2005. Toll-like receptors. II. Distribution and pathways involved in TLR signalling. Folia. Biol. (Praha). 51: 188-197.
12 Kurt-Jones, E. A., L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, and R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1: 398-401.   DOI
13 Haynes, L. M., D. D. Moore, E. A. Kurt-Jones, R. W. Finberg, L. J. Anderson, and R. A. Tripp. 2001. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75: 10730-10737.   DOI
14 Dempoya, J., T. Matsumiya, T. Imaizumi, R. Hayakari, F. Xing, H. Yoshida, K. Okumura, and K. Satoh. 2012. Double-stranded RNA induces biphasic STAT1 phosphorylation by both type I interferon (IFN)-dependent and type I IFN-independent pathways. J. Virol. 86: 12760-12769.   DOI
15 Awomoyi, A. A., P. Rallabhandi, T. I. Pollin, E. Lorenz, M. B. Sztein, M. S. Boukhvalova, V. G. Hemming, J. C. Blanco, and S. N. Vogel. 2007. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in highrisk infants and young children. J. Immunol. 179: 3171-3177.   DOI
16 Goodbourn, S. and R. E. Randall. 2009. The regulation of type I interferon production by paramyxoviruses. J. Interferon Cytokine Res. 29: 539-547.   DOI
17 Le Goffic, R., J. Pothlichet, D. Vitour, T. Fujita, E. Meurs, M. Chignard, and M. Si-Tahar. 2007. Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J. Immunol. 178: 3368-72.   DOI
18 O'Neill, L. A. and A. G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7: 353-364.   DOI
19 Oshansky, C. M., T. M. Krunkosky, J. Barber, L. P. Jones, and R. A. Tripp. 2009. Respiratory syncytial virus proteins modulate suppressors of cytokine signaling 1 and 3 and the type I interferon response to infection by a toll-like receptor pathway. Viral Immunol. 22: 147-161.   DOI
20 Moore, E. C., J. Barber, and R. A. Tripp. 2008. Respiratory syncytial virus (RSV) attachment and nonstructural proteins modify the type I interferon response associated with suppressor of cytokine signaling (SOCS) proteins and IFN-stimulated gene-15 (ISG15). Virol. J. 5: 116.   DOI
21 Tripp, R. A., C. Oshansky, and R. Alvarez. 2005. Cytokines and respiratory syncytial virus infection. Proc. Am. Thorac. Soc. 2: 147-149.   DOI
22 Teng, M. N. 2012. The non-structural proteins of RSV: targeting interferon antagonists for vaccine development. Infect. Disord. Drug Targets 12: 129-137.   DOI
23 Lopusna, K., I. Rezuchova, T. Betakova, L. Skovranova, J. Tomaskova, L. Lukacikova, and P. Kabat. 2013. Interferons lambda, new cytokines with antiviral activity. Acta Virol. 57: 171-179.   DOI
24 Kotenko, S. V. 2011. IFN-lambdas. Curr. Opin. Immunol. 23: 583-590.   DOI
25 Hauser, M. J., D. Dlugolenski, M. R. Culhane, D. E. Wentworth, S. M. Tompkins, and R. A. Tripp. 2013. Antiviral responses by Swine primary bronchoepithelial cells are limited compared to human bronchoepithelial cells following influenza virus infection. PLoS One 8: e70251.   DOI
26 Thornburg, N. J., S. L. Hayward, and J. E. Crowe, Jr. 2012. Respiratory syncytial virus regulates human microRNAs by using mechanisms involving beta interferon and NF-kappaB. MBio. 3: e00220-12.
27 Munir, S., C. Le Nouen, C. Luongo, U. J. Buchholz, P. L. Collins, and A. Bukreyev. 2008. Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells. J. Virol. 82: 8780-8796.   DOI
28 Tripp, R. A., L. Jones, and L. J. Anderson. 2000. Respiratory syncytial virus G and/or SH glycoproteins modify CC and CXC chemokine mRNA expression in the BALB/c mouse. J. Virol. 74: 6227-6229.   DOI
29 Tripp, R. A., D. Moore, and L. J. Anderson. 2000. TH(1)- and TH(2)-TYPE cytokine expression by activated t lymphocytes from the lung and spleen during the inflammatory response to respiratory syncytial virus. Cytokine 12: 801-807.   DOI
30 Tripp, R. A., D. Moore, L. Jones, W. Sullender, J. Winter, and L. J. Anderson. 1999. Respiratory syncytial virus G and/or SH protein alters Th1 cytokines, natural killer cells, and neutrophils responding to pulmonary infection in BALB/c mice. J. Virol. 73: 7099-7107.
31 Tripp, R. A., L. P. Jones, L. M. Haynes, H. Zheng, P. M. Murphy, and L. J. Anderson. 2001. CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat. Immunol. 2: 732-738.   DOI
32 Harcourt, J., R. Alvarez, L. P. Jones, C. Henderson, L. J. Anderson, and R. A. Tripp. 2006. Respiratory syncytial virus G protein and G protein CX3C motif adversely affect CX3CR1+ T cell responses. J. Immunol. 176: 1600-1608.   DOI
33 Tripp, R. A. and L. J. Anderson. 1998. Cytotoxic T-lymphocyte precursor frequencies in BALB/c mice after acute respiratory syncytial virus (RSV) infection or immunization with a formalin-inactivated RSV vaccine. J. Virol. 72: 8971-8975.
34 Bakre, A., P. Mitchell, J. K. Coleman, L. P. Jones, G. Saavedra, M. Teng, S. M. Tompkins, and R. A. Tripp. 2012. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J. Gen. Virol. 93: 2346-2356.   DOI
35 Haynes, L. M., L. P. Jones, A. Barskey, L. J. Anderson, and R. A. Tripp. 2003. Enhanced disease and pulmonary eosinophilia associated with formalin-inactivated respiratory syncytial virus vaccination are linked to G glycoprotein CX3CCX3CR1 interaction and expression of substance P. J. Virol. 77: 9831-9844.   DOI
36 Tripp, R. A., A. Dakhama, L. P. Jones, A. Barskey, E. W. Gelfand, and L. J. Anderson. 2003. The G glycoprotein of respiratory syncytial virus depresses respiratory rates through the CX3C motif and substance P. J. Virol. 77: 6580-6584.   DOI
37 Li, X. Q., Z. F. Fu, R. Alvarez, C. Henderson, and R. A. Tripp. 2006. Respiratory syncytial virus (RSV) infects neuronal cells and processes that innervate the lung by a process involving RSV G protein. J. Virol. 80: 537-540.   DOI
38 Zhang, W., Y. Choi, L. M. Haynes, J. L. Harcourt, L. J. Anderson, L. P. Jones, and R. A. Tripp. 2010. Vaccination to induce antibodies blocking the CX3C-CX3CR1 interaction of respiratory syncytial virus G protein reduces pulmonary inflammation and virus replication in mice. J. Virol. 84: 1148-1157.   DOI
39 Miao, C., G. U. Radu, H. Caidi, R. A. Tripp, L. J. Anderson, and L. M. Haynes. 2009. Treatment with respiratory syncytial virus G glycoprotein monoclonal antibody or F(ab')2 components mediates reduced pulmonary inflammation in mice. J. Gen. Virol. 90: 1119-1123.   DOI
40 Kauvar, L. M., J. L. Harcourt, L. M. Haynes, and R. A. Tripp. 2010. Therapeutic targeting of respiratory syncytial virus G-protein. Immunotherapy 2: 655-661.   DOI
41 Haynes, L. M., H. Caidi, G. U. Radu, C. Miao, J. L. Harcourt, R. A. Tripp, and L. J. Anderson. 2009. Therapeutic monoclonal antibody treatment targeting respiratory syncytial virus (RSV) G protein mediates viral clearance and reduces the pathogenesis of RSV infection in BALB/c mice. J. Infect. Dis. 200: 439-447.   DOI
42 Collarini, E. J., F. E. Lee, O. Foord, M. Park, G. Sperinde, H. Wu, W. D. Harriman, S. F. Carroll, S. L. Ellsworth, L. J. Anderson, R. A. Tripp, E. E. Walsh, B. A. Keyt, and L. M. Kauvar. 2009. Potent high-affinity antibodies for treatment and prophylaxis of respiratory syncytial virus derived from B cells of infected patients. J. Immunol. 183: 6338-6345.   DOI
43 Harcourt, J. L., R. A. Karron, and R. A. Tripp. 2004. Anti-G protein antibody responses to respiratory syncytial virus infection or vaccination are associated with inhibition of G protein CX3C-CX3CR1 binding and leukocyte chemotaxis. J. Infect. Dis. 190: 1936-1940.   DOI
44 Choi, Y., C. S. Mason, L. P. Jones, J. Crabtree, P. A. Jorquera, and R. A. Tripp. 2012. Antibodies to the central conserved region of respiratory syncytial virus (RSV) G protein block RSV G protein CX3C-CX3CR1 binding and cross-neutralize RSV A and B strains. Viral Immunol. 25: 193-203.
45 Beeler, J. A. and M. C. Eichelberger. 2013. Influenza and respiratory syncytial virus (RSV) vaccines for infants: safety, immunogenicity, and efficacy. Microb. Pathog. 55: 9-15.   DOI
46 Zhang, W. and R. A. Tripp. 2008. RNA interference inhibits respiratory syncytial virus replication and disease pathogenesis without inhibiting priming of the memory immune response. J. Virol. 82: 12221-12231.   DOI
47 Schmidt, A. C. 2011. Progress in respiratory virus vaccine development. Semin. Respir. Crit. Care Med. 32: 527-540.   DOI
48 DeVincenzo, J. P. 2012. The promise, pitfalls and progress of RNA-interference-based antiviral therapy for respiratory viruses. Antivir. Ther. 17: 213-225.   DOI
49 Alvarez, R., S. Elbashir, T. Borland, I. Toudjarska, P. Hadwiger, M. John, I. Roehl, S. S. Morskaya, R. Martinello, J. Kahn, M. Van Ranst, R. A. Tripp, J. P. DeVincenzo, R. Pandey, M. Maier, L. Nechev, M. Manoharan, V. Kotelianski, and R. Meyers. 2009. RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob. Agents Chemother. 53: 3952- 3962.   DOI
50 Bakre, A., L. E. Andersen, V. Meliopoulos, K. Coleman, X. Yan, P. Brooks, J. Crabtree, S. M. Tompkins, and R. A. Tripp. 2013. Identification of host kinase genes required for influenza virus replication and the regulatory role of MicroRNAs. PLoS One 8: e66796.   DOI
51 Perwitasari, O., X. Yan, S. Johnson, C. White, P. Brooks, S. M. Tompkins, and R. A. Tripp. 2013. Targeting organic anion transporter 3 with probenecid as a novel anti-influenza a virus strategy. Antimicrob. Agents Chemother. 57: 475-483.   DOI
52 Meliopoulos, V. A., L. E. Andersen, P. Brooks, X. Yan, A. Bakre, J. K. Coleman, S. M. Tompkins, and R. A. Tripp. 2012. MicroRNA regulation of human protease genes essential for influenza virus replication. PLoS One 7: e37169.   DOI
53 Panda, D. and S. Cherry. 2012. Cell-based genomic screening: elucidating virus-host interactions. Curr. Opin. Virol. 2: 784-792.   DOI
54 Meliopoulos, V. A., L. E. Andersen, K. F. Birrer, K. J. Simpson, J. W. Lowenthal, A. G. Bean, J. Stambas, C. R. Stewart, S. M. Tompkins, V. W. van Beusechem, I. Fraser, M. Mhlanga, S. Barichievy, Q. Smith, D. Leake, J. Karpilow, A. Buck, G. Jona, and R. A. Tripp. 2012. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. FASEB J. 26: 1372-1386.   DOI
55 Tran, A. T., M. N. Rahim, C. Ranadheera, A. Kroeker, J. P. Cortens, K. J. Opanubi, J. A. Wilkins, and K. M. Coombs. 2013. Knockdown of specific host factors protects against influenza virus-induced cell death. Cell Death Dis. 4: e769.   DOI
56 Prusty, B. K., A. Karlas, T. F. Meyer, and T. Rudel. 2011. Genome-wide RNAi screen for viral replication in mammalian cell culture. Methods Mol. Biol. 721: 383-395.   DOI
57 Kassner, P. D. 2008. Discovery of novel targets with high throughput RNA interference screening. Comb. Chem. High Throughput Screen 11: 175-184.   DOI