Browse > Article
http://dx.doi.org/10.5483/BMBRep.2020.53.11.204

Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain  

Park, Chan-Woo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Lee, Sung-Min (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Yoon, Ki-Jun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
BMB Reports / v.53, no.11, 2020 , pp. 551-564 More about this Journal
Abstract
Proper development of the nervous system is critical for its function, and deficits in neural development have been implicated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developing brain. Especially, recent discoveries have been showing that various mRNA chemical modifications can affect RNA metabolism including decay, transport, splicing, and translation in cell type- and tissue-specific manner, leading to the emergence of the field of epitranscriptomics. Moreover, accumulating evidences showed that certain types of RNA modifications are predominantly found in the developing brain and their dysregulation disrupts not only the developmental processes, but also neuronal activities, suggesting that epitranscriptomic mechanisms play critical post-transcriptional regulatory roles in development of the brain and etiology of brain disorders. Here, we review recent advances in our understanding of molecular regulation on transcriptome plasticity by RNA modifications in neurodevelopment and how alterations in these RNA regulatory programs lead to human brain disorders.
Keywords
Brain disorders; Epitranscriptome; Neurodevelopment; RNA modification; Transcriptome plasticity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Peng S, Xiao W, Ju D et al (2019) Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med 11, eaau7116   DOI
2 Vissers LE, Gilissen C and Veltman JA (2016) Genetic studies in intellectual disability and related disorders. Nat Rev Genet 17, 9-18   DOI
3 Iwase S, Berube NG, Zhou Z et al (2017) Epigenetic etiology of intellectual disability. J Neurosci 37, 10773-10782   DOI
4 Zhang F, Kang Y, Wang M et al (2018) Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum Mol Genet 27, 3936-3950
5 Ignatova VV, Stolz P, Kaiser S et al (2020) The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev 34, 715-729   DOI
6 Yoon KJ, Ringeling FR, Vissers C et al (2017) Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell 171, 877-889 e817   DOI
7 Rai K, Chidester S, Zavala CV et al (2007) Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev 21, 261-266   DOI
8 Bykhovskaya Y, Casas K, Mengesha E, Inbal A and Fischel-Ghodsian N (2004) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74, 1303-1308   DOI
9 Richard EM, Polla DL, Assir MZ et al (2019) Bi-allelic variants in METTL5 cause autosomal-recessive intellectual disability and microcephaly. Am J Hum Genet 105, 869-878   DOI
10 de Brouwer APM, Abou Jamra R, Kortel N et al (2018) Variants in PUS7 cause intellectual disability with speech delay, microcephaly, short stature, and aggressive behavior. Am J Hum Genet 103, 1045-1052   DOI
11 Cao M, Dona M, Valentino ML et al (2016) Clinical and molecular study in a long-surviving patient with MLASA syndrome due to novel PUS1 mutations. Neurogenetics 17, 65-70   DOI
12 Angelova MT, Dimitrova DG, Dinges N et al (2018) The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders. Front Bioeng Biotechnol 6, 46   DOI
13 Telley L, Govindan S, Prados J et al (2016) Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443-1446   DOI
14 Yoon KJ, Vissers C, Ming GL and Song H (2018) Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. J Cell Biol 217, 1901-1914   DOI
15 Blanco S, Dietmann S, Flores JV et al (2014) Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 33, 2020-2039   DOI
16 Flores JV, Cordero-Espinoza L, Oeztuerk-Winder F et al (2017) Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. Stem Cell Reports 8, 112-124   DOI
17 Tuorto F, Liebers R, Musch T et al (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19, 900-905   DOI
18 Shaheen R, Han L, Faqeih E et al (2016) A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum Genet 135, 707-713   DOI
19 Heiss NS, Bachner D, Salowsky R, Kolb A, Kioschis P and Poustka A (2000) Gene structure and expression of the mouse dyskeratosis congenita gene, dkc1. Genomics 67, 153-163   DOI
20 Abbasi-Moheb L, Mertel S, Gonsior M et al (2012) Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet 90, 847-855   DOI
21 Martinez FJ, Lee JH, Lee JE et al (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet 49, 380-385   DOI
22 Khan MA, Rafiq MA, Noor A et al (2012) Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet 90, 856-863   DOI
23 Willems P, Vits L, Buntinx I, Raeymaekers P, Van Broeckhoven C and Ceulemans B (1993) Localization of a gene responsible for nonspecific mental retardation (MRX9) to the pericentromeric region of the X chromosome. Genomics 18, 290-294   DOI
24 Hamel BC, Smits AP, van den Helm B et al (1999) Four families (MRX43, MRX44, MRX45, MRX52) with nonspecific X-linked mental retardation: clinical and psychometric data and results of linkage analysis. Am J Med Genet 85, 290-304   DOI
25 Wang CX, Cui GS, Liu X et al (2018) METTL3-mediated m6A modification is required for cerebellar development. PLoS Biol 16, e2004880   DOI
26 Xu H, Dzhashiashvili Y, Shah A et al (2020) m(6)A mRNA methylation is essential for oligodendrocyte maturation and CNS myelination. Neuron 105, 293-309 e295   DOI
27 Chizhikov V and Millen KJ (2003) Development and malformations of the cerebellum in mice. Mol Genet Metab 80, 54-65   DOI
28 Goll MG, Kirpekar F, Maggert KA et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395-398   DOI
29 Ma C, Chang M, Lv H et al (2018) RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol 19, 68   DOI
30 Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G and Dominissini D (2020) The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci 21, 36-51   DOI
31 Zhao BS, Roundtree IA and He C (2017) Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18, 31-42   DOI
32 Meyer KD and Jaffrey SR (2017) Rethinking m(6)A readers, writers, and erasers. Annu Rev Cell Dev Biol 33, 319-342   DOI
33 Hussain S (2017) Shaping and reshaping transcriptome plasticity during evolution. Trends Biochem Sci 42, 682-684   DOI
34 Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149, 1635-1646   DOI
35 Liu J, Li K, Cai J et al (2020) Landscape and regulation of m(6)A and m(6)Am Methylome across human and mouse tissues. Mol Cell 77, 426-440 e426   DOI
36 Li X, Zhu P, Ma S et al (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11, 592-597   DOI
37 Dai L, Xing L, Gong P et al (2008) Positive association of the FTSJ1 gene polymorphisms with nonsyndromic Xlinked mental retardation in young Chinese male subjects. J Hum Genet 53, 592-597   DOI
38 Wang R, Lei T, Fu F et al (2019) Application of chromosome microarray analysis in patients with unexplained developmental delay/intellectual disability in South China. Pediatr Neonatol 60, 35-42   DOI
39 Giorda R, Bonaglia MC, Beri S et al (2009) Complex segmental duplications mediate a recurrent dup(X)(p11. 22-p11.23) associated with mental retardation, speech delay, and EEG anomalies in males and females. Am J Hum Genet 85, 394-400   DOI
40 Liu J, An Z, Luo J, Li J, Li F and Zhang Z (2020) Episo: quantitative estimation of RNA 5-methylcytosine at isoform level by high-throughput sequencing of RNA treated with bisulfite. Bioinformatics 36, 2033-2039   DOI
41 Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201-206   DOI
42 Meyer KD, Patil DP, Zhou J et al (2015) 5' UTR m(6)A Promotes Cap-Independent Translation. Cell 163, 999-1010   DOI
43 Liu J, Yue Y, Han D et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10, 93-95   DOI
44 Batool S, Raza H, Zaidi J, Riaz S, Hasan S and Syed NI (2019) Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders. J Neurophysiol 121, 1381-1397   DOI
45 Ma DK, Bonaguidi MA, Ming GL and Song H (2009) Adult neural stem cells in the mammalian central nervous system. Cell Res 19, 672-682   DOI
46 Chen J, Zhang YC, Huang C et al (2019) m(6)A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics Proteomics Bioinformatics 17, 154-168   DOI
47 Li L, Zang L, Zhang F et al (2017) Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet 26, 2398-2411   DOI
48 Bai L, Tang Q, Zou Z et al (2018) m6A demethylase FTO regulates dopaminergic neurotransmission deficits caused by arsenite. Toxicol Sci 165, 431-446   DOI
49 Zhang X, Wang F, Wang Z et al (2020) ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m(6)A-dependent manner. Ann Transl Med 8, 646   DOI
50 Jensen LR, Garrett L, Holter SM et al (2019) A mouse model for intellectual disability caused by mutations in the X-linked 2'Omethyltransferase Ftsj1 gene. Biochim Biophys Acta Mol Basis Dis 1865, 2083-2093   DOI
51 Choudhry Z, Sengupta SM, Grizenko N et al (2013) Association between obesity-related gene FTO and ADHD. Obesity (Silver Spring) 21, E738-744   DOI
52 Oldmeadow C, Mossman D, Evans TJ et al (2014) Combined analysis of exon splicing and genome wide polymorphism data predict schizophrenia risk loci. J Psychiatr Res 52, 44-49   DOI
53 Yoon KJ, Ming GL and Song H (2018) Epitranscriptomes in the adult mammalian brain: dynamic changes regulate behavior. Neuron 99, 243-245   DOI
54 Barbon A and Magri C (2020) RNA editing and modifications in mood disorders. Genes (Basel) 11, 872   DOI
55 Shi H, Zhang X, Weng YL et al (2018) m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 563, 249-253   DOI
56 Chang M, Lv H, Zhang W et al (2017) Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol 7, 170166   DOI
57 Engel M, Eggert C, Kaplick PM et al (2018) The role of m(6)A/m-RNA methylation in stress response regulation. Neuron 99, 389-403 e389   DOI
58 Koranda JL, Dore L, Shi H et al (2018) Mettl14 is essential for epitranscriptomic regulation of striatal function and learning. Neuron 99, 283-292 e285   DOI
59 Merkurjev D, Hong WT, Iida K et al (2018) Synaptic N(6)-methyladenosine (m(6)A) epitranscriptome reveals functional partitioning of localized transcripts. Nat Neurosci 21, 1004-1014   DOI
60 Zhang Z, Wang M, Xie D et al (2018) METTL3-mediated N(6)-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Res 28, 1050-1061   DOI
61 Hou Y, Dan X, Babbar M et al (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15, 565-581   DOI
62 Mauer J and Jaffrey SR (2018) FTO, m(6) Am , and the hypothesis of reversible epitranscriptomic mRNA modifications. FEBS Lett 592, 2012-2022   DOI
63 Jia G, Fu Y, Zhao X et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7, 885-887   DOI
64 Zheng G, Dahl JA, Niu Y et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49, 18-29   DOI
65 Wei J, Liu F, Lu Z et al (2018) Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 71, 973-985 e975   DOI
66 Wang X, Zhao BS, Roundtree IA et al (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388-1399   DOI
67 Du H, Zhao Y, He J et al (2016) YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 7, 12626   DOI
68 Park OH, Ha H, Lee Y et al (2019) Endoribonucleolytic cleavage of m(6)A-containing RNAs by RNase P/MRP complex. Mol Cell 74, 494-507 e498   DOI
69 Shi H, Wang X, Lu Z et al (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res 27, 315-328   DOI
70 Zaccara S and Jaffrey SR (2020) A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 181, 1582-1595 e1518   DOI
71 Wang Z, Cheng H, Xu H, Yu X and Sui D (2020) A five-gene signature derived from m6A regulators to improve prognosis prediction of neuroblastoma. Cancer Biomark 28, 275-284   DOI
72 Du T, Rao S, Wu L et al (2015) An association study of the m6A genes with major depressive disorder in Chinese Han population. J Affect Disord 183, 279-286   DOI
73 Lasman L, Krupalnik V, Viukov S et al (2020) Contextdependent functional compensation between Ythdf m6A reader proteins. Genes Dev 34, 19-20
74 Xiao W, Adhikari S, Dahal U et al (2016) Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 61, 507-519   DOI
75 Roundtree IA, Luo GZ, Zhang Z et al (2017) YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife 6, e31311   DOI
76 Bian J, Zhuo Z, Zhu J et al (2020) Association between METTL3 gene polymorphisms and neuroblastoma susceptibility: A nine-centre case-control study. J Cell Mol Med 24, 9280-9286   DOI
77 Zhuo Z, Lu H, Zhu J et al (2020) METTL14 gene polymorphisms confer neuroblastoma susceptibility: an eightcenter case-control study. Mol Ther Nucleic Acids 22, 17-26   DOI
78 Cheng J, Xu L, Deng L et al (2020) RNA N(6)-methyladenosine modification is required for miR-98/MYCN axismediated inhibition of neuroblastoma progression. Sci Rep 10, 13624   DOI
79 Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114, 97-109   DOI
80 Stupp R, Roila F and Group EGW (2009) Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 20 Suppl 4, 126-128
81 Xi Z, Xue Y, Zheng J, Liu X, Ma J and Liu Y (2016) WTAP expression predicts poor prognosis in malignant glioma patients. J Mol Neurosci 60, 131-136   DOI
82 Sundar SJ, Hsieh JK, Manjila S, Lathia JD and Sloan A (2014) The role of cancer stem cells in glioblastoma. Neurosurg Focus 37, E6
83 Cui Q, Shi H, Ye P et al (2017) m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18, 2622-2634   DOI
84 Huang H, Weng H, Sun W et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20, 285-295   DOI
85 Patil DP, Chen CK, Pickering BF et al (2016) m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369-373   DOI
86 Mao Y, Dong L, Liu XM et al (2019) m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun 10, 5332   DOI
87 Alarcon CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482-485   DOI
88 Wu R, Li A, Sun B et al (2019) A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res 29, 23-41   DOI
89 Dimitrova DG, Teysset L and Carre C (2019) RNA 2'-O-methylation (Nm) modification in human diseases. Genes (Basel) 10, 117   DOI
90 Byszewska M, Smietanski M, Purta E and Bujnicki JM (2014) RNA methyltransferases involved in 5' cap biosynthesis. RNA Biol 11, 1597-1607   DOI
91 Reichow SL, Hamma T, Ferre-D'Amare AR and Varani G (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35, 1452-1464   DOI
92 Dai Q, Moshitch-Moshkovitz S, Han D et al (2017) Nm-seq maps 2'-O-methylation sites in human mRNA with base precision. Nat Methods 14, 695-698   DOI
93 Guy MP and Phizicky EM (2015) Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes. RNA 21, 61-74   DOI
94 Leschziner GD, Coffey AJ, Andrew T et al (2011) Q8IYL2 is a candidate gene for the familial epilepsy syndrome of Partial Epilepsy with Pericentral Spikes (PEPS). Epilepsy Res 96, 109-115   DOI
95 Weng YL, Wang X, An R et al (2018) Epitranscriptomic m(6)A regulation of axon regeneration in the adult mammalian nervous system. Neuron 97, 313-325 e316   DOI
96 Belanger F, Stepinski J, Darzynkiewicz E and Pelletier J (2010) Characterization of hMTr1, a human Cap1 2'-O-ribose methyltransferase. J Biol Chem 285, 33037-33044   DOI
97 Khoddami V and Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31, 458-464   DOI
98 Casella G, Tsitsipatis D, Abdelmohsen K and Gorospe M (2019) mRNA methylation in cell senescence. Wiley Interdiscip Rev RNA 10, e1547
99 Min KW, Zealy RW, Davila S et al (2018) Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. Aging Cell 17, e12753   DOI
100 Lee MY, Leonardi A, Begley TJ and Melendez JA (2020) Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming. Redox Biol 28, 101375   DOI
101 Cumming TB and Brodtmann A (2011) Can stroke cause neurodegenerative dementia? Int J Stroke 6, 416-424   DOI
102 Chokkalla AK, Mehta SL, Kim T, Chelluboina B, Kim J and Vemuganti R (2019) Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain. Stroke 50, 2912-2921   DOI
103 Fan L, Mao C, Hu X et al (2019) New insights into the pathogenesis of Alzheimer's disease. Front Neurol 10, 1312   DOI
104 Keller L, Xu W, Wang HX, Winblad B, Fratiglioni L and Graff C (2011) The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk: a prospective cohort study. J Alzheimers Dis 23, 461-469   DOI
105 Ge L, Zhang N, Chen Z et al (2020) Level of N6- methyladenosine in peripheral blood RNA: a novel predictive biomarker for gastric cancer. Clin Chem 66, 342-351   DOI
106 Zhang S, Zhao BS, Zhou A et al (2017) m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31, 591-606 e596   DOI
107 Visvanathan A, Patil V, Arora A et al (2018) Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37, 522-533   DOI
108 Zang L, Kondengaden SM, Che F, Wang L and Heng X (2018) Potential epigenetic-based therapeutic targets for glioma. Front Mol Neurosci 11, 408   DOI
109 Strick A, von Hagen F, Gundert L et al (2020) The N(6)-methyladenosine (m(6) A) erasers alkylation repair homologue 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma. BJU Int 125, 617-624   DOI
110 Wang W, Li J, Lin F, Guo J and Zhao J (2020) Identification of N(6)-methyladenosine-related lncRNAs for patients with primary glioblastoma. Neurosurg Rev [Online ahead of print]
111 Tu Z, Wu L, Wang P et al (2020) N6-methylandenosine-related lncRNAs are potential biomarkers for predicting the overall survival of lower-grade glioma patients. Front Cell Dev Biol 8, 642   DOI
112 Xiao L, Li X, Mu Z et al (2020) FTO inhibition enhances the anti-tumor effect of temozolomide by targeting MYCmiR-155/23a cluster-MXI1 feedback circuit in glioma. Cancer Res 80, 3945-3958   DOI
113 Malacrida A, Rivara M, Di Domizio A et al (2020) 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem 28, 115300   DOI
114 Basanta-Sanchez M, Wang R, Liu Z et al (2017) TET1-mediated oxidation of 5-formylcytosine (5fC) to 5-carboxycytosine (5caC) in RNA. Chembiochem 18, 72-76   DOI
115 Yang X, Yang Y, Sun BF et al (2017) 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res 27, 606-625   DOI
116 Xing J, Yi J, Cai X et al (2015) NSun2 promotes cell growth via elevating cyclin-dependent kinase 1 translation. Mol Cell Biol 35, 4043-4052   DOI
117 Motorin Y, Lyko F and Helm M (2010) 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 38, 1415-1430   DOI
118 Jobert L, Skjeldam HK, Dalhus B et al (2013) The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control. Mol Cell 49, 339-345   DOI
119 Schwartz S, Bernstein DA, Mumbach MR et al (2014) Transcriptome-wide mapping reveals widespread dynamicregulated pseudouridylation of ncRNA and mRNA. Cell 159, 148-162   DOI
120 Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM and Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143-146   DOI
121 Duan J, Li L, Lu J, Wang W and Ye K (2009) Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol Cell 34, 427-439   DOI
122 Carlile TM, Martinez NM, Schaening C et al (2019) mRNA structure determines modification by pseudouridine synthase 1. Nat Chem Biol 15, 966-974   DOI
123 Balestrino R and Schapira AHV (2020) Parkinson disease. Eur J Neurol 27, 27-42   DOI
124 Reitz C, Tosto G, Mayeux R, Luchsinger JA, Group N-LNFS and Alzheimer's disease neuroimaging I (2012) Genetic variants in the fat and obesity associated (FTO) gene and risk of Alzheimer's disease. PLoS One 7, e50354   DOI
125 Li H, Ren Y, Mao K et al (2018) FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signaling. Biochem Biophys Res Commun 498, 234-239   DOI
126 Liu X, Meng P, Yang G, Zhang M, Peng S and Zhai MZ (2020) Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress. BMC Genomics 21, 474   DOI
127 Westmark CJ, Maloney B, Alisch RS, Sokol DK and Lahiri DK (2020) FMRP regulates the nuclear export of Adam9 and Psen1 mRNAs: secondary analysis of an N(6)-methyladenosine dataset. Sci Rep 10, 10781   DOI
128 Boza-Serrano A, Yang Y, Paulus A and Deierborg T (2018) Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer's disease mouse model 5xFAD. Sci Rep 8, 1550   DOI
129 Chen X, Yu C, Guo M et al (2019) Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem Neurosci 10, 2355-2363   DOI
130 Hess ME, Hess S, Meyer KD et al (2013) The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 16, 1042-1048   DOI
131 Li M, Zhao X, Wang W et al (2018) Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice. Genome Biol 19, 69   DOI
132 Garcia-Campos MA, Edelheit S, Toth U et al (2019) Deciphering the "m(6)A code" via antibody-independent quantitative profiling. Cell 178, 731-747 e716   DOI
133 Sas-Chen A, Thomas JM, Matzov D et al (2020) Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583, 638-643   DOI
134 Wang Y, Li Y, Yue M et al (2018) N(6)-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci 21, 195-206   DOI
135 Li Y, Xia L, Tan K et al (2020) N(6)-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet 52, 870-877   DOI
136 Yao B, Christian KM, He C, Jin P, Ming GL and Song H (2016) Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 17, 537-549   DOI
137 Guy MP, Shaw M, Weiner CL et al (2015) Defects in tRNA anticodon loop 2'-O-methylation are implicated in nonsyndromic X-linked intellectual disability due to mutations in FTSJ1. Hum Mutat 36, 1176-1187   DOI
138 Higa-Nakamine S, Suzuki T, Uechi T et al (2012) Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Res 40, 391-398   DOI
139 Bouffard S, Dambroise E, Brombin A et al (2018) Fibrillarin is essential for S-phase progression and neuronal differentiation in zebrafish dorsal midbrain and retina. Dev Biol 437, 1-16   DOI
140 Cavaille J, Buiting K, Kiefmann M et al (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A 97, 14311-14316   DOI
141 Peters J (2008) Prader-Willi and snoRNAs. Nat Genet 40, 688-689   DOI