Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0258

Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization  

Cattaneo, Matteo (Team RNA and Epigenetics, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine)
Morozumi, Yuichi (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine)
Perazza, Daniel (Team RNA and Epigenetics, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine)
Boussouar, Faycal (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine)
Jamshidikia, Mahya (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine)
Rousseaux, Sophie (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine)
Verdel, Andre (Team RNA and Epigenetics, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine)
Khochbin, Saadi (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine)
Abstract
ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations.
Keywords
AAA ATPase; ATAD2; chromatin; histone chaperone; transcription; yeast;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boussouar, F., Jamshidikia, M., Morozumi, Y., Rousseaux, S., and Khochbin, S. (2013). Malignant genome reprogramming by ATAD2. Biochim. Biophys. Acta 1829, 1010-1014.   DOI   ScienceOn
2 Caron, C., Lestrat, C., Marsal, S., Escoffier, E., Curtet, S., Virolle, V., Barbry, P., Debernardi, A., Brambilla, C., Brambilla, E., et al. (2010). Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene 29, 5171-5181.   DOI   ScienceOn
3 Ciro, M., Prosperini, E., Quarto, M., Grazini, U., Walfridsson, J., McBlane, F., Nucifero, P., Pacchiana, G., Capra, M., Christensen, J., et al. (2009). ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 69, 8491-8498.   DOI   ScienceOn
4 Revenko, A.S., Kalashnikova, E.V., Gemo, A.T., Zou, J.X., and Chen, H.W. (2010). Chromatin loading of E2F-MLL complex by cancerassociated coregulator ANCCA via reading a specific histone mark. Mol. Cell. Biol. 30, 5260-5272.   DOI   ScienceOn
5 Tackett, A.J., Dilworth, D.J., Davey, M.J., O'Donnell, M., Aitchison, J.D., Rout, M.P., and Chait, B.T. (2005). Proteomic and genomic characterization of chromatin complexes at a boundary. J. Cell Biol. 169, 35-47.   DOI   ScienceOn
6 UniProt, C. (2014). Activities at the universal protein resource (UniProt). Nucleic Acids Res. 42, D191-198.   DOI   ScienceOn
7 Zou, J.X., Revenko, A.S., Li, L.B., Gemo, A.T., and Chen, H.W. (2007). ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERalpha, is required for coregulator occupancy and chromatin modification. Proc. Natl. Acad. Sci. USA 104, 18067-18072.   DOI   ScienceOn
8 Zunder, R.M., and Rine, J. (2012). Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression. Mol. Cell. Biol. 32, 4337-4349.   DOI
9 Gradolatto, A., Rogers, R.S., Lavender, H., Taverna, S.D., Allis, C.D., Aitchison, J.D., and Tackett, A.J. (2008). Saccharomyces cerevisiae Yta7 regulates histone gene expression. Genetics 179, 291-304.   DOI   ScienceOn
10 Gradolatto, A., Smart, S.K., Byrum, S., Blair, L.P., Rogers, R.S., Kolar, E.A., Lavender, H., Larson, S.K., Aitchison, J.D., Taverna, S.D., et al. (2009). A noncanonical bromodomain in the AAA ATPase protein Yta7 directs chromosomal positioning and barrier chromatin activity. Mol. Cell. Biol. 29, 4604-4611.   DOI   ScienceOn
11 Gunjan, A., and Verreault, A. (2003). A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115, 537-549.   DOI   ScienceOn
12 Jambunathan, N., Martinez, A.W., Robert, E.C., Agochukwu, N.B., Ibos, M.E., Dugas, S.L., and Donze, D. (2005). Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary. Genetics 171, 913-922.   DOI   ScienceOn
13 Kemena, C., and Notredame, C. (2009). Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics 25, 2455-2465.   DOI   ScienceOn
14 Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465-469.   DOI   ScienceOn
15 Kurat, C.F., Lambert, J.P., van Dyk, D., Tsui, K., van Bakel, H., Kaluarachchi, S., Friesen, H., Kainth, P., Nislow, C., Figeys, D., et al. (2011). Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein. Genes Dev. 25, 2489-2501.   DOI   ScienceOn
16 Lombardi, L.M., Ellahi, A., and Rine, J. (2011). Direct regulation of nucleosome density by the conserved AAA-ATPase Yta7. Proc. Natl. Acad. Sci. USA 108, E1302-1311.   DOI
17 McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., and Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 41, W597-600.   DOI   ScienceOn
18 Dereeper, A., Audic, S., Claverie, J.M., and Blanc, G. (2010). BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 10, 8.   DOI   ScienceOn
19 Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., and Zhou, M.M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491-496.   DOI   ScienceOn
20 Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J.M., Taly, J.F., and Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39, W13-17.   DOI
21 Ferreira, M.E., Flaherty, K., and Prochasson, P. (2011). The Saccharomyces cerevisiae histone chaperone Rtt106 mediates the cell cycle recruitment of SWI/SNF and RSC to the HIRdependent histone genes. PLoS One 6, e21113.   DOI
22 Fillingham, J., Kainth, P., Lambert, J.P., van Bakel, H., Tsui, K., Pena-Castillo, L., Nislow, C., Figeys, D., Hughes, T.R., Greenblatt, J., et al. (2009). Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. Mol. Cell 35, 340-351.   DOI   ScienceOn
23 Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J.P., Barsyte-Lovejoy, D., Felletar, I., Volkmer, R., Muller, S., Pawson, T., et al. (2012). Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214-231.   DOI   ScienceOn
24 Goudarzi, A., Shiota, H., Rousseaux, S., and Khochbin, S. (2014). Genome-scale acetylation-dependent histone eviction during spermatogenesis. J. Mol. Biol. pii: S0022-2836(14)00122-3.
25 Zou, J.X., Guo, L., Revenko, A.S., Tepper, C.G., Gemo, A.T., Kung, H.J., and Chen, H.W. (2009). Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer. Cancer Res. 69, 3339-3346.   DOI   ScienceOn
26 Tseng, R.J., Armstrong, K.R., Wang, X., and Chamberlin, H.M. (2007). The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans. Mol. Genet. Genomics 278, 507-518.   DOI