DOI QR코드

DOI QR Code

Respiratory Syncytial Virus (RSV) Modulation at the Virus-Host Interface Affects Immune Outcome and Disease Pathogenesis

  • Tripp, Ralph A. (Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia)
  • Received : 2013.08.14
  • Accepted : 2013.08.28
  • Published : 2013.10.31

Abstract

The dynamics of the virus-host interface in the response to respiratory virus infection is not well-understood; however, it is at this juncture that host immunity to infection evolves. Respiratory viruses have been shown to modulate the host response to gain a replication advantage through a variety of mechanisms. Viruses are parasites and must co-opt host genes for replication, and must interface with host cellular machinery to achieve an optimal balance between viral and cellular gene expression. Host cells have numerous strategies to resist infection, replication and virus spread, and only recently are we beginning to understand the network and pathways affected. The following is a short review article covering some of the studies associated with the Tripp laboratory that have addressed how respiratory syncytial virus (RSV) operates at the virus-host interface to affects immune outcome and disease pathogenesis.

Keywords

References

  1. Cate, T. R. 1998. Impact of influenza and other community- acquired viruses. Semin. Respir. Infect. 13: 17-23.
  2. Greenberg, S. B. 2007. Rhinovirus and coronavirus infections. Semin. Respir. Crit. Care Med. 28: 182-192. https://doi.org/10.1055/s-2007-976490
  3. Heikkinen, T. 2000. Role of viruses in the pathogenesis of acute otitis media. Pediatr. Infect. Dis. J. 19: S17-22. https://doi.org/10.1097/00006454-200005001-00004
  4. Mahony, J. B., A. Petrich, and M. Smieja. 2011. Molecular diagnosis of respiratory virus infections. Crit. Rev. Clin. Lab. Sci. 48: 217-249. https://doi.org/10.3109/10408363.2011.640976
  5. See, H. and P. Wark. 2008. Innate immune response to viral infection of the lungs. Paediatr. Respir. Rev. 9: 243-250. https://doi.org/10.1016/j.prrv.2008.04.001
  6. Bartlett, J. A., A. J. Fischer, and P. B. McCray, Jr. 2008. Innate immune functions of the airway epithelium. Contrib. Microbiol. 15: 147-163.
  7. Oshansky, C. M., W. Zhang, E. Moore, and R. A. Tripp. 2009. The host response and molecular pathogenesis associated with respiratory syncytial virus infection. Future Microbiol. 4: 279-297. https://doi.org/10.2217/fmb.09.1
  8. Schwarze, J. and K. J. Mackenzie. 2013. Novel insights into immune and inflammatory responses to respiratory viruses. Thorax. 68: 108-110. https://doi.org/10.1136/thoraxjnl-2012-202291
  9. Sajjan, U. S. 2013. Susceptibility to viral infections in chronic obstructive pulmonary disease: role of epithelial cells. Curr. Opin. Pulm. Med. 19: 125-132. https://doi.org/10.1097/MCP.0b013e32835cef10
  10. Averett, D. R., S. P. Fletcher, W. Li, S. E. Webber, and J. R. Appleman. 2007. The pharmacology of endosomal TLR agonists in viral disease. Biochem. Soc. Trans. 35: 1468-1472. https://doi.org/10.1042/BST0351468
  11. Sandor, F. and M. Buc. 2005. Toll-like receptors. II. Distribution and pathways involved in TLR signalling. Folia. Biol. (Praha). 51: 188-197.
  12. Kurt-Jones, E. A., L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, and R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1: 398-401. https://doi.org/10.1038/80833
  13. Haynes, L. M., D. D. Moore, E. A. Kurt-Jones, R. W. Finberg, L. J. Anderson, and R. A. Tripp. 2001. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75: 10730-10737. https://doi.org/10.1128/JVI.75.22.10730-10737.2001
  14. Awomoyi, A. A., P. Rallabhandi, T. I. Pollin, E. Lorenz, M. B. Sztein, M. S. Boukhvalova, V. G. Hemming, J. C. Blanco, and S. N. Vogel. 2007. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in highrisk infants and young children. J. Immunol. 179: 3171-3177. https://doi.org/10.4049/jimmunol.179.5.3171
  15. Goodbourn, S. and R. E. Randall. 2009. The regulation of type I interferon production by paramyxoviruses. J. Interferon Cytokine Res. 29: 539-547. https://doi.org/10.1089/jir.2009.0071
  16. Le Goffic, R., J. Pothlichet, D. Vitour, T. Fujita, E. Meurs, M. Chignard, and M. Si-Tahar. 2007. Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J. Immunol. 178: 3368-72. https://doi.org/10.4049/jimmunol.178.6.3368
  17. Dempoya, J., T. Matsumiya, T. Imaizumi, R. Hayakari, F. Xing, H. Yoshida, K. Okumura, and K. Satoh. 2012. Double-stranded RNA induces biphasic STAT1 phosphorylation by both type I interferon (IFN)-dependent and type I IFN-independent pathways. J. Virol. 86: 12760-12769. https://doi.org/10.1128/JVI.01881-12
  18. O'Neill, L. A. and A. G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7: 353-364. https://doi.org/10.1038/nri2079
  19. Oshansky, C. M., T. M. Krunkosky, J. Barber, L. P. Jones, and R. A. Tripp. 2009. Respiratory syncytial virus proteins modulate suppressors of cytokine signaling 1 and 3 and the type I interferon response to infection by a toll-like receptor pathway. Viral Immunol. 22: 147-161. https://doi.org/10.1089/vim.2008.0098
  20. Moore, E. C., J. Barber, and R. A. Tripp. 2008. Respiratory syncytial virus (RSV) attachment and nonstructural proteins modify the type I interferon response associated with suppressor of cytokine signaling (SOCS) proteins and IFN-stimulated gene-15 (ISG15). Virol. J. 5: 116. https://doi.org/10.1186/1743-422X-5-116
  21. Tripp, R. A., C. Oshansky, and R. Alvarez. 2005. Cytokines and respiratory syncytial virus infection. Proc. Am. Thorac. Soc. 2: 147-149. https://doi.org/10.1513/pats.200502-014AW
  22. Lopusna, K., I. Rezuchova, T. Betakova, L. Skovranova, J. Tomaskova, L. Lukacikova, and P. Kabat. 2013. Interferons lambda, new cytokines with antiviral activity. Acta Virol. 57: 171-179. https://doi.org/10.4149/av_2013_02_171
  23. Kotenko, S. V. 2011. IFN-lambdas. Curr. Opin. Immunol. 23: 583-590. https://doi.org/10.1016/j.coi.2011.07.007
  24. Hauser, M. J., D. Dlugolenski, M. R. Culhane, D. E. Wentworth, S. M. Tompkins, and R. A. Tripp. 2013. Antiviral responses by Swine primary bronchoepithelial cells are limited compared to human bronchoepithelial cells following influenza virus infection. PLoS One 8: e70251. https://doi.org/10.1371/journal.pone.0070251
  25. Teng, M. N. 2012. The non-structural proteins of RSV: targeting interferon antagonists for vaccine development. Infect. Disord. Drug Targets 12: 129-137. https://doi.org/10.2174/187152612800100170
  26. Thornburg, N. J., S. L. Hayward, and J. E. Crowe, Jr. 2012. Respiratory syncytial virus regulates human microRNAs by using mechanisms involving beta interferon and NF-kappaB. MBio. 3: e00220-12.
  27. Munir, S., C. Le Nouen, C. Luongo, U. J. Buchholz, P. L. Collins, and A. Bukreyev. 2008. Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells. J. Virol. 82: 8780-8796. https://doi.org/10.1128/JVI.00630-08
  28. Tripp, R. A., L. Jones, and L. J. Anderson. 2000. Respiratory syncytial virus G and/or SH glycoproteins modify CC and CXC chemokine mRNA expression in the BALB/c mouse. J. Virol. 74: 6227-6229. https://doi.org/10.1128/JVI.74.13.6227-6229.2000
  29. Tripp, R. A., D. Moore, and L. J. Anderson. 2000. TH(1)- and TH(2)-TYPE cytokine expression by activated t lymphocytes from the lung and spleen during the inflammatory response to respiratory syncytial virus. Cytokine 12: 801-807. https://doi.org/10.1006/cyto.1999.0615
  30. Tripp, R. A., D. Moore, L. Jones, W. Sullender, J. Winter, and L. J. Anderson. 1999. Respiratory syncytial virus G and/or SH protein alters Th1 cytokines, natural killer cells, and neutrophils responding to pulmonary infection in BALB/c mice. J. Virol. 73: 7099-7107.
  31. Harcourt, J., R. Alvarez, L. P. Jones, C. Henderson, L. J. Anderson, and R. A. Tripp. 2006. Respiratory syncytial virus G protein and G protein CX3C motif adversely affect CX3CR1+ T cell responses. J. Immunol. 176: 1600-1608. https://doi.org/10.4049/jimmunol.176.3.1600
  32. Tripp, R. A. and L. J. Anderson. 1998. Cytotoxic T-lymphocyte precursor frequencies in BALB/c mice after acute respiratory syncytial virus (RSV) infection or immunization with a formalin-inactivated RSV vaccine. J. Virol. 72: 8971-8975.
  33. Bakre, A., P. Mitchell, J. K. Coleman, L. P. Jones, G. Saavedra, M. Teng, S. M. Tompkins, and R. A. Tripp. 2012. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J. Gen. Virol. 93: 2346-2356. https://doi.org/10.1099/vir.0.044255-0
  34. Tripp, R. A., L. P. Jones, L. M. Haynes, H. Zheng, P. M. Murphy, and L. J. Anderson. 2001. CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat. Immunol. 2: 732-738. https://doi.org/10.1038/90675
  35. Haynes, L. M., L. P. Jones, A. Barskey, L. J. Anderson, and R. A. Tripp. 2003. Enhanced disease and pulmonary eosinophilia associated with formalin-inactivated respiratory syncytial virus vaccination are linked to G glycoprotein CX3CCX3CR1 interaction and expression of substance P. J. Virol. 77: 9831-9844. https://doi.org/10.1128/JVI.77.18.9831-9844.2003
  36. Tripp, R. A., A. Dakhama, L. P. Jones, A. Barskey, E. W. Gelfand, and L. J. Anderson. 2003. The G glycoprotein of respiratory syncytial virus depresses respiratory rates through the CX3C motif and substance P. J. Virol. 77: 6580-6584. https://doi.org/10.1128/JVI.77.11.6580-6584.2003
  37. Li, X. Q., Z. F. Fu, R. Alvarez, C. Henderson, and R. A. Tripp. 2006. Respiratory syncytial virus (RSV) infects neuronal cells and processes that innervate the lung by a process involving RSV G protein. J. Virol. 80: 537-540. https://doi.org/10.1128/JVI.80.1.537-540.2006
  38. Zhang, W., Y. Choi, L. M. Haynes, J. L. Harcourt, L. J. Anderson, L. P. Jones, and R. A. Tripp. 2010. Vaccination to induce antibodies blocking the CX3C-CX3CR1 interaction of respiratory syncytial virus G protein reduces pulmonary inflammation and virus replication in mice. J. Virol. 84: 1148-1157. https://doi.org/10.1128/JVI.01755-09
  39. Kauvar, L. M., J. L. Harcourt, L. M. Haynes, and R. A. Tripp. 2010. Therapeutic targeting of respiratory syncytial virus G-protein. Immunotherapy 2: 655-661. https://doi.org/10.2217/imt.10.53
  40. Miao, C., G. U. Radu, H. Caidi, R. A. Tripp, L. J. Anderson, and L. M. Haynes. 2009. Treatment with respiratory syncytial virus G glycoprotein monoclonal antibody or F(ab')2 components mediates reduced pulmonary inflammation in mice. J. Gen. Virol. 90: 1119-1123. https://doi.org/10.1099/vir.0.009308-0
  41. Haynes, L. M., H. Caidi, G. U. Radu, C. Miao, J. L. Harcourt, R. A. Tripp, and L. J. Anderson. 2009. Therapeutic monoclonal antibody treatment targeting respiratory syncytial virus (RSV) G protein mediates viral clearance and reduces the pathogenesis of RSV infection in BALB/c mice. J. Infect. Dis. 200: 439-447. https://doi.org/10.1086/600108
  42. Collarini, E. J., F. E. Lee, O. Foord, M. Park, G. Sperinde, H. Wu, W. D. Harriman, S. F. Carroll, S. L. Ellsworth, L. J. Anderson, R. A. Tripp, E. E. Walsh, B. A. Keyt, and L. M. Kauvar. 2009. Potent high-affinity antibodies for treatment and prophylaxis of respiratory syncytial virus derived from B cells of infected patients. J. Immunol. 183: 6338-6345. https://doi.org/10.4049/jimmunol.0901373
  43. Harcourt, J. L., R. A. Karron, and R. A. Tripp. 2004. Anti-G protein antibody responses to respiratory syncytial virus infection or vaccination are associated with inhibition of G protein CX3C-CX3CR1 binding and leukocyte chemotaxis. J. Infect. Dis. 190: 1936-1940. https://doi.org/10.1086/425516
  44. Choi, Y., C. S. Mason, L. P. Jones, J. Crabtree, P. A. Jorquera, and R. A. Tripp. 2012. Antibodies to the central conserved region of respiratory syncytial virus (RSV) G protein block RSV G protein CX3C-CX3CR1 binding and cross-neutralize RSV A and B strains. Viral Immunol. 25: 193-203.
  45. Beeler, J. A. and M. C. Eichelberger. 2013. Influenza and respiratory syncytial virus (RSV) vaccines for infants: safety, immunogenicity, and efficacy. Microb. Pathog. 55: 9-15. https://doi.org/10.1016/j.micpath.2012.11.013
  46. Schmidt, A. C. 2011. Progress in respiratory virus vaccine development. Semin. Respir. Crit. Care Med. 32: 527-540. https://doi.org/10.1055/s-0031-1283289
  47. DeVincenzo, J. P. 2012. The promise, pitfalls and progress of RNA-interference-based antiviral therapy for respiratory viruses. Antivir. Ther. 17: 213-225. https://doi.org/10.3851/IMP2064
  48. Alvarez, R., S. Elbashir, T. Borland, I. Toudjarska, P. Hadwiger, M. John, I. Roehl, S. S. Morskaya, R. Martinello, J. Kahn, M. Van Ranst, R. A. Tripp, J. P. DeVincenzo, R. Pandey, M. Maier, L. Nechev, M. Manoharan, V. Kotelianski, and R. Meyers. 2009. RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob. Agents Chemother. 53: 3952- 3962. https://doi.org/10.1128/AAC.00014-09
  49. Zhang, W. and R. A. Tripp. 2008. RNA interference inhibits respiratory syncytial virus replication and disease pathogenesis without inhibiting priming of the memory immune response. J. Virol. 82: 12221-12231. https://doi.org/10.1128/JVI.01557-08
  50. Bakre, A., L. E. Andersen, V. Meliopoulos, K. Coleman, X. Yan, P. Brooks, J. Crabtree, S. M. Tompkins, and R. A. Tripp. 2013. Identification of host kinase genes required for influenza virus replication and the regulatory role of MicroRNAs. PLoS One 8: e66796. https://doi.org/10.1371/journal.pone.0066796
  51. Perwitasari, O., X. Yan, S. Johnson, C. White, P. Brooks, S. M. Tompkins, and R. A. Tripp. 2013. Targeting organic anion transporter 3 with probenecid as a novel anti-influenza a virus strategy. Antimicrob. Agents Chemother. 57: 475-483. https://doi.org/10.1128/AAC.01532-12
  52. Meliopoulos, V. A., L. E. Andersen, P. Brooks, X. Yan, A. Bakre, J. K. Coleman, S. M. Tompkins, and R. A. Tripp. 2012. MicroRNA regulation of human protease genes essential for influenza virus replication. PLoS One 7: e37169. https://doi.org/10.1371/journal.pone.0037169
  53. Meliopoulos, V. A., L. E. Andersen, K. F. Birrer, K. J. Simpson, J. W. Lowenthal, A. G. Bean, J. Stambas, C. R. Stewart, S. M. Tompkins, V. W. van Beusechem, I. Fraser, M. Mhlanga, S. Barichievy, Q. Smith, D. Leake, J. Karpilow, A. Buck, G. Jona, and R. A. Tripp. 2012. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. FASEB J. 26: 1372-1386. https://doi.org/10.1096/fj.11-193466
  54. Tran, A. T., M. N. Rahim, C. Ranadheera, A. Kroeker, J. P. Cortens, K. J. Opanubi, J. A. Wilkins, and K. M. Coombs. 2013. Knockdown of specific host factors protects against influenza virus-induced cell death. Cell Death Dis. 4: e769. https://doi.org/10.1038/cddis.2013.296
  55. Prusty, B. K., A. Karlas, T. F. Meyer, and T. Rudel. 2011. Genome-wide RNAi screen for viral replication in mammalian cell culture. Methods Mol. Biol. 721: 383-395. https://doi.org/10.1007/978-1-61779-037-9_24
  56. Panda, D. and S. Cherry. 2012. Cell-based genomic screening: elucidating virus-host interactions. Curr. Opin. Virol. 2: 784-792. https://doi.org/10.1016/j.coviro.2012.10.007
  57. Kassner, P. D. 2008. Discovery of novel targets with high throughput RNA interference screening. Comb. Chem. High Throughput Screen 11: 175-184. https://doi.org/10.2174/138620708783877744

Cited by

  1. Modulation of host adaptive immunity by hRSV proteins vol.5, pp.7, 2014, https://doi.org/10.4161/viru.32225
  2. A Cross-Study Biomarker Signature of Human Bronchial Epithelial Cells Infected with Respiratory Syncytial Virus vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/3605302
  3. HCoV-IMDB: Database for the Analysis of Interactions between HCoV and Host Immune Proteins vol.8, pp.1, 2019, https://doi.org/10.7236/ijasc.2019.8.1.1
  4. Toll-like receptor 4-mediated respiratory syncytial virus disease and lung transcriptomics in differentially susceptible inbred mouse strains vol.51, pp.12, 2013, https://doi.org/10.1152/physiolgenomics.00101.2019
  5. Respiratory Syncytial Virus (RSV) G Protein Vaccines With Central Conserved Domain Mutations Induce CX3C-CX3CR1 Blocking Antibodies vol.13, pp.2, 2013, https://doi.org/10.3390/v13020352
  6. Immunopathology of RSV: An Updated Review vol.13, pp.12, 2013, https://doi.org/10.3390/v13122478