DOI QR코드

DOI QR Code

Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells

  • Hong, Chang-Pyo (Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Choe, Moon-Kyung (Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Roh, Tae-Young (Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Received : 2012.08.01
  • Accepted : 2012.08.24
  • Published : 2012.09.30

Abstract

Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq) histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE)-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac) were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.

Keywords

References

  1. Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705. https://doi.org/10.1016/j.cell.2007.02.005
  2. Marmorstein R, Trievel RC. Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 2009;1789:58-68. https://doi.org/10.1016/j.bbagrm.2008.07.009
  3. Black JC, Whetstine JR. Chromatin landscape: methylation beyond transcription. Epigenetics 2011;6:9-15. https://doi.org/10.4161/epi.6.1.13298
  4. Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2011;12:7-18.
  5. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008;132:887-898. https://doi.org/10.1016/j.cell.2008.02.022
  6. Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 2009;16: 990-995. https://doi.org/10.1038/nsmb.1659
  7. Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 2002;99: 8695-8700. https://doi.org/10.1073/pnas.082249499
  8. Roh TY, Ngau WC, Cui K, Landsman D, Zhao K. High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 2004;22:1013-1016. https://doi.org/10.1038/nbt990
  9. Roh TY, Cuddapah S, Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 2005;19:542-552. https://doi.org/10.1101/gad.1272505
  10. Roh TY, Cuddapah S, Cui K, Zhao K. The genomic landscape of histone modifications in human T cells. Proc Natl Acad Sci U S A 2006;103:15782-15787. https://doi.org/10.1073/pnas.0607617103
  11. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007;129:823-837. https://doi.org/10.1016/j.cell.2007.05.009
  12. Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 2008;9:179-191. https://doi.org/10.1038/nrg2270
  13. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, et al. Combinatorial patterns of histone acetyla tions and methylations in the human genome. Nat Genet 2008;40:897-903. https://doi.org/10.1038/ng.154
  14. Hong CP, Park J, Roh TY. Epigenetic regulation in cell reprogramming revealed by genome-wide analysis. Epigenomics 2011;3:73-81. https://doi.org/10.2217/epi.10.72
  15. He G, Elling AA, Deng XW. The epigenome and plant development. Annu Rev Plant Biol 2011;62:411-435. https://doi.org/10.1146/annurev-arplant-042110-103806
  16. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007;447:433-440. https://doi.org/10.1038/nature05919
  17. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3:415-428. https://doi.org/10.1038/nrg816
  18. Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med 2007;13:363-372. https://doi.org/10.1016/j.molmed.2007.07.003
  19. Ozsolak F, Song JS, Liu XS, Fisher DE. High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 2007;25:244-248. https://doi.org/10.1038/nbt1279
  20. Steinfeld I, Shamir R, Kupiec M. A genome-wide analysis in Saccharomyces cerevisiae demonstrates the influence of chromatin modifiers on transcription. Nat Genet 2007;39:303-309. https://doi.org/10.1038/ng1965
  21. Nagy PL, Cleary ML, Brown PO, Lieb JD. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc Natl Acad Sci U S A 2003;100:6364-6369. https://doi.org/10.1073/pnas.1131966100
  22. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 2007;17:877-885. https://doi.org/10.1101/gr.5533506
  23. Eeckhoute J, Lupien M, Meyer CA, Verzi MP, Shivdasani RA, Liu XS, et al. Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers. Genome Res 2009;19:372-380.
  24. Weigelt B, Peterse JL, van 't Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer 2005;5:591-602. https://doi.org/10.1038/nrc1670
  25. Maric P, Ozretic P, Levanat S, Oreskovic S, Antunac K, Beketic-Oreskovic L. Tumor markers in breast cancer: evaluation of their clinical usefulness. Coll Antropol 2011;35:241-247.
  26. Choe MK, Hong CP, Park J, Seo SH, Roh TY. Functional elements demarcated by histone modifications in breast cancer cells. Biochem Biophys Res Commun 2012;418:475-482. https://doi.org/10.1016/j.bbrc.2012.01.042
  27. Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O'Brien C, et al. TRPS1 targeting by miR-221/222 promotes the epithelial- to-mesenchymal transition in breast cancer. Sci Signal 2011;4:ra41. https://doi.org/10.1126/scisignal.2001538
  28. Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH. An integrated software system for analyzing ChIP-chip and ChIPseq data. Nat Biotechnol 2008;26:1293-1300. https://doi.org/10.1038/nbt.1505
  29. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010;38:576-589. https://doi.org/10.1016/j.molcel.2010.05.004
  30. Ye T, Krebs AR, Choukrallah MA, Keime C, Plewniak F, Davidson I, et al. seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res 2011;39:e35. https://doi.org/10.1093/nar/gkq1287
  31. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. https://doi.org/10.1038/nprot.2008.211
  32. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009;37:W202-W208. https://doi.org/10.1093/nar/gkp335
  33. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol 2007; 8:R24. https://doi.org/10.1186/gb-2007-8-2-r24
  34. Hogan GJ, Lee CK, Lieb JD. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet 2006;2:e158. https://doi.org/10.1371/journal.pgen.0020158
  35. Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 2011;21:1757-1767. https://doi.org/10.1101/gr.121541.111
  36. Waki H, Nakamura M, Yamauchi T, Wakabayashi K, Yu J, Hirose-Yotsuya L, et al. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation. PLoS Genet 2011;7:e1002311. https://doi.org/10.1371/journal.pgen.1002311
  37. Tian Y, Jia Z, Wang J, Huang Z, Tang J, Zheng Y, et al. Global mapping of H3K4me1 and H3K4me3 reveals the chromatin state-based cell type-specific gene regulation in human Treg cells. PLoS One 2011;6:e27770. https://doi.org/10.1371/journal.pone.0027770
  38. Phillips JE, Corces VG. CTCF: master weaver of the genome. Cell 2009;137:1194-1211. https://doi.org/10.1016/j.cell.2009.06.001
  39. Serandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh C, et al. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res 2011;21:555-565. https://doi.org/10.1101/gr.111534.110

Cited by

  1. Genome-wide analysis of histone modifications in latently HIV-1 infected T cells vol.28, pp.12, 2014, https://doi.org/10.1097/QAD.0000000000000309
  2. Identification of the early and late responder genes during the generation of induced pluripotent stem cells from mouse fibroblasts vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171300
  3. The Epigenetic Landscape of Promoter Genome-wide Analysis in Breast Cancer vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-06790-z
  4. Epigenetic mechanisms of breast cancer: an update of the current knowledge vol.6, pp.6, 2014, https://doi.org/10.2217/epi.14.59
  5. Polycomb group protein-mediated histone modifications during cell differentiation vol.7, pp.1, 2015, https://doi.org/10.2217/epi.14.61
  6. Enhancement of transgene expression by nuclear transcription factor Y and CCCTC-binding factor pp.87567938, 2018, https://doi.org/10.1002/btpr.2712