• Title/Summary/Keyword: Gear Teeth

Search Result 197, Processing Time 0.025 seconds

Elastohydrodynamic Lubrication Analysis on the Contacting Surfaces between Spur Gear Teeth (스퍼 기어 치면 사이의 탄성유체 윤활해석)

  • 구영필;김형자;김영대
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.65-71
    • /
    • 2003
  • An elastohydrodynamic lubrication analysis was performed on the contacting teeth surfaces of involute spur gears. Kinematics of the gear and the pinion were taken into account to get accurate geometric clearances around the elastohydrodynamic lubrication region of the contacting teeth. Pressure and film thickness distribution for the whole contacting faces in lubricated condition at several time steps were obtained through the analysis. Besides the pressure spike at the outlet region, a representative phenomenon in elastohydrodynamic lubrication regime, the pressure at the inlet region was slightly higher than that of the center region. The film thickness of transient condition was thicker than that of steady condition.

Upper Bound Analysis for Near-net Shape Forging of a Crown Gear Form

  • Lee, Seung-Dong;Kim, Won-Il;Kim, Yohng-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.94-104
    • /
    • 2000
  • A kinematically admissible velocity field for near-net shape forging of a crown gear form is proposed. This takes into account the profiled shape of the teeth chosen by approximating these kinematically as radially straight taper teeth, (rectangular and trapezoidal teeth). The upper bound to the forging load, the relative forging pressure and the deformed configurations, with both the initially solid circular cylindrical and hollow billets, are predicted using the velocity field at varying incremental punch movements considering differing frictional factors. These and other results are given and commented upon.

  • PDF

A Study on the Performance Characteristics for Relief Port Shape of Oil Hydraulic Gear Pump (유압 기어펌프의 릴리프 홈 형상 변화에 따른 성능특성에 관한 연구)

  • 김철호;노춘경;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.114-120
    • /
    • 1999
  • It is possible for a volume of fluid to become trapped in the space between two adjoining teeth and the tips of the teeth engage in Gear Pumu with involute teeth. This trapped fluid leads to several harmful results, for example fluctuating pressure and aeration of pump. In this study, hence, theoretical and experimental analyses on this 'Trapping' were accomplished as using relief port, one of the means for avoiding it. Also, the grasp and analysis on variational type of the internal pressure in parallel with above experiments are achieved so that hydrodynamic behaviors in pump were contemplated.

  • PDF

A Study the Development of Involute Spur Gears Profiles Strength (인벌류트 스퍼기어 치형 강도에 관한 연구)

  • Cho, Seong-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.269-276
    • /
    • 2006
  • Strength Design method for involute spur gears is developed. The developed gear strength design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is matrix form which is developed from this study. Design variables are transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress, etc. Gear design method developed this study can be apply to the gears of plants, machine tools, automobiles.

  • PDF

A Study on Automatic Technology for a industrial Industrial Involute Gears Design (산업용 인벌류트 치차 설계를 위한 자동화 기술에 관한 연구)

  • 조성철;변문현
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.39-46
    • /
    • 1997
  • This study describes a computer aided design system on involute gear for power transmition. Input data for gear design are pressure angle $20^{\circ}$, transmitted power, gear volume, gear ratio, addendum ratio of rack, dedendum ratio of rack, edge radius of rack, allowable contact stress and allowable bending stress etc. Bending strength contact strength and scoring are considered as the design constraints. Method of optimization developed this study. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth.

  • PDF

A Study on Technology for Involute Bevel Gear Design (인벌류트 베벨기어 설계 기술에 관한 연구)

  • Cho, Seong-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • Design method for involute bevel gears is developed. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is MS(matrix search) which is developed from this study. Design variables are pressure angle 20., transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress. etc. Gears design method developed this study can be applied to the plane, helicopter, printer, machine tools.

Development of Operating Mechanism of a Pretensioner using Internal Gear Pairs (내접 기어를 이용한 프리텐셔너의 구동 메커니즘 개발)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Wook-Hyeon;Hong, Yo-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.89-94
    • /
    • 2010
  • The pretensioner is used to retract the belt webbing and tighten up any slack in the event of a crash. The retracting force of the pretensioner helps move the passenger into the optimum crash position in his or her seat. In this paper, the new concept of an operating mechanism of the pretensioning system is presented. The internal gear design program is developed using MATLAB. Two kinds of numerical analysis model are created. The first one, the rigid body dynamic model, is used to estimate the performance of several gear pairs. The initial performance of the new operating mechanism is analyzed and the best combination of the gear pairs is selected. The second one, the structural dynamic model, is used to calculate the deformation of the gear teeth. To decrease the deformation and interference of the teeth, the shape of the gear pairs is changed.

Diagnosis in Beding Fatigue of Spur Gear Teeth

  • Sentoku, Hirofumi;Tokuda, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.307-311
    • /
    • 1993
  • Research concerning gears included in rotating machines has been reported using the acoustic emission (AE) method, however, almost no research has been conducted using the AE method in regard to running gears in a bending fatigue processor spur gear teeth. Therefore, in this report, a power circulating-type gear testing machine was used and AE signals and crack length were measured in the bending fatigue process of case-hardened spur gear. Furthermore, the envelope of the AE signal was detected and various analysis were carried out in this data. In the course of the experiments, the following results were observed : the AE signal envelope consists mainly of contact frequency component and twice as many as this;two peaks of AE appear in each tooth contact by the tip corner contact ; as a result of the severe tip corner contact ; as a result of the severe tip corner contact with the sudden increase of crack length, AE signal becomes large.

  • PDF

Whine Vibration in Gear Drive (기어구동에 의한 화인진동해석)

  • 최연선;신용호;김기범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3246-3252
    • /
    • 1994
  • The vibration of meshing gear system is originated form teeth deformation, teeth contact ratio, profile error, etc. The gear vibration is classified as whine vibration during meshing and as rattle vibration during idling. In this study, the whine vibration is investigated under the assumption of piecewise linearity of elastic stiffness due to the variation of meshing. Numerical, theoretical and experimental investigations show the existence of the superharmonic components of the second and the third order. consistently It can be concluded that the superharmonic components in whine vibration of meshing gear is originated from the stiffness variation. It also shows that the higher order harmonics are reduced on the increase of motor speed.

Strenth analysis gear by finite element method (유한요소법에 의한 전위치차의 강도해석)

  • 조선휘;박종근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.27-33
    • /
    • 1981
  • In the paper, it was attempted to verify how the strength around fillet area of shifted gear would be affected by variables such as number of teeth, shifted value, and diametral pitch. Thereafter, the Lewis' tooth factor of the shifted gear was computed in terms of previously mentioned variables in order to observe the characteristics of stress change related from tooth factor and tooth number with the parameter of shifted values and diametral pitches. From the results of quasi-theoretical values by Finite Element Method(F.E.M.)and experimental values through the photo-elastic tests, the followings were identified. The more the number of gear teeth increased, the more the profile of the tooth became close to that of rack, and accordingly the stresses in the fillet area decreased significantly in certain range. Furthermore, as the shifted value and pressure angle increase the stresses tend decrease. Moreover, the stresses analyzed by F.E.M. in the filled area became around 1.22 times larger than the stresses computed by Lewis' form factor, and this is supposed as on influence of the stress concentration in fillet area.

  • PDF