• Title/Summary/Keyword: Gear Machining Accuracy

Search Result 21, Processing Time 0.023 seconds

Study on Noise Reduction of an Industrial Take-out Robot (산업용 취출로봇의 소음 저감에 대한 연구)

  • Cho, Jae-Yun;Kim, Deok-Su;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • In this paper, we experimentally investigate factors that decrease in noise of a industrial take-out robot at driving state. For this, we analyse change in the noise of the take-out robot with gear machining accuracy and clearance. In order to calculate the noise related to gear machining accuracy that is based upon the Japanese Industrial Standard(JIS), we equally increase motor speed from 0 rpm to 1250 rpm. In addition, to investigate influence of clearance on noise, we evenly change clearance from 0.5 mm to 1.2 mm. These experiments show that clearance is more effective factor than gear machining accuracy to reduce the noise of the take-out robot.

An Experimental Study to Reduce the Fraction of Noise Defect of Hoist Gear Boxes (호이스트 기어박스의 소음불량률 저감을 위한 실험적 연구)

  • 이희원;손병진;신용하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1347-1354
    • /
    • 1994
  • This paper deals with the experimental research, including measurement and analysis and field survey, on the causes of occurring noise defective gear boxes in hoist production plant in order to reduce the fraction of their occurrence. In this reserch following investigations are performed : measurement and gear-boxes, examination of each machining process of production, measurement and analysis of dimensional accuracy of each part, comparative vibration test with exchanging inaccurate parts. From these investigations, it is found that the machining accuracy of pinion gear tooth thickness is the most sensitive factor of noise problem. By maintaining the tooth thickness error within 0.05 mm tolerance in the gear cutting process, the fraction of noise defective gear-boxes are greatly reduced to less than 2%, where the usual rate of it has been 20-50%.

Factors affecting accuracy or grade of bevel gears during manufacturing (베벨기어 제조 공정에서 베벨기어의 정도 및 급수에 미치는 인자)

  • Jun, B.Y.;Eom, J.G.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.405-409
    • /
    • 2008
  • In this paper, factors affecting accuracy or grade of forged bevel gears are investigated in the experimental way. Two materials of SKD-11 and copper. two machining conditions and two machines of WIA-V50 and Roders-RFM600 are particularly investigated to reveal their effects on the grade of bevel gear forging dies in this study. It has been shown that the bevel gear grades are much affected by all the factors tested, revealing that it is of great significance to find the optimal machining process of die making to develop or manufacture a high precision bevel gear and that the bevel gear is degraded by one from the grade of its related die during forging.

  • PDF

Analysis of the Relation Between Machining Accuracy of Internal Gear and Noise in Reduction Gears (감속기 내부 기어의 가공정밀도와 구동간 소음의 연관특성에 관한 연구)

  • Park, Sung-Pil;Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.537-543
    • /
    • 2012
  • In this study, we experimentally investigate a noise mechanism related to the machining accuracy of the reducer in the driving state. We fabricate a planetary reducer and four types of gears for use in the planetary reducer. We use signal analysis to determine the noise and vibration of the reducer at different motor speeds; the motor speed is increased from 0 rpm to the maximum speed in a stepwise manner. In addition, we obtain the sound level by using a sound level meter. The machining accuracy of gears is evaluated by public organizations, Korea Testing Laboratory (KTL), on the basis of the Japanese Industrial Standard (JIS). We analyze and compare the results with the noise and vibration of the reducer.

Development of the Sub Gear for the Scissors Gear System for Automobile Engines

  • Nakazawa, Katsuhito;Nagata, Toshihiko;Motooka, Naoki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.756-757
    • /
    • 2006
  • P/M enables the economical production of components for many kinds of gears. Functionally, the sub gear requires high tooth accuracy and bending fatigue strength. The whole tooth profile was sized after sintering to satisfy the gear tooth accuracy specification. The part was redesigned to reduce machining requirements. The required bending fatigue strength was achieved through appropriate material choice and induction of compressive residual stress by shotpeening after carburizing. The P/M sub gear replaced a forged steel gear, satisfied performance requirements, expanded the use of P/M applications and provided over 30% cost reduction.

  • PDF

A Study on Fp Z/8 of Anti-Backlash Gear in an Engine (엔진용 백래쉬 방지 기어의 Fp Z/8에 관한 연구)

  • Zhong, Xing;Lv, Jianhua;Lu, Hao;Zhou, Rui;Guo, Jianyu;Kai, Lang;Qin, Zhen;Zhang, Qi;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.24-30
    • /
    • 2020
  • The high speed of an engine balance box may cause significant additional gear noise. Gear accuracy is the most useful key to reduce gear noise, but the small tooth width and thin-walled anti-backlash gear introduce challenges to the manufacturing process. In order to reduce the gear noise caused by gear pitch error, this paper investigates the correlation between influencing factors and gear pitch error by analyzing the processing technology, tooling fixture, and equipment accuracy. By improving the process and optimizing the gear design, the gear machining accuracy was improved and the processing cost was saved.

Machining of Straight Bevel Gear Die with Crown Teeth Using Ball End Mill (볼 엔드밀을 이용한 크라운 치형을 갖는 직선 베벨기어 금형 가공)

  • Lee, Kang-Hee;Lee, Ki-Yong;Ahn, Dong-Gyu;Park, Yong-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.104-110
    • /
    • 2008
  • A lot of straight bevel gears have been manufactured by the cold forging process in order to improve the productivity and mechanical property of the product. The die for the cold forging of the gear needs high precision and reproducibility. In the study, cold forging die has been modeled by CAD/CAM and manufactured by machining center using ball end mill coated by (Al, Ti)N for heat-treated alloy steel(STD11, HRC 60). Through the measurement of the machined die, satisfactory dimensional accuracy and surface roughness were obtained. In the future, many 3-d cold forging dies will be directly machined instead of electric discharge machining.

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

Development of Jig Type Chuck for Roundness Improvement in a Machining of High Stage Speed Gear (고단속 기어의 가공 시 진원도 향상을 위한 지그척 개발)

  • Kim, Nam-Kyung;Bae, Kang-Yul;Kim, Nam-Hoon;Jang, Jeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Recently, the requirements for high precision and efficiency machining are gradually increased to raise international competitiveness at the industrial fields of automotive and gears. This trend had made effects on the industrial fields in Korea and which needs further studying of high accuracy and efficiency machining. This study is to investigate the effects of Jig type chuck for roundness improvement in CNC turning machining of high stage speed gear. After hobbing machining, Dimensional change before and after heat treatment was very largely generated. In order to solve this problem was to develop a jig type chuck. After the heat treatment, the operation of the chuck which was the most distinguished equipment among Jig type chuck(0.006mm), Scroll type chuck(0.05mm) and Bolt type chuck(0.04mm). Therefore, Jig type chuck was satisfied the requirement from the actual field(0.02mm).

Development of Fine Blanking Dies for Forming Small Sized Module Gear (미소 모듈기어의 Fine Blanking 성형금형 개발)

  • Kim J. S.;Shim H. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.308-315
    • /
    • 2002
  • In recent automotive industries, fine blanking technology widely used in production of components with relatively thick gauges in brake systems, seat recliner, door locks, and auto transmission systems. Due to its advantages to obtain almost final product quality using fine blanking forming process without additional finish machining processes, consequently saving the production costs. In this paper we intended to develope the small sized module gear toothed dual seat recliner sector gear(0.5mm module) for car seats using fine blanking process which needed semi piercing with computer simulation and a lot of try and errors to achieve required accuracy and geometric quality. However through the some corrections of tool geometries with tryout test, we could get successful results.

  • PDF