• 제목/요약/키워드: Ge$_2$Sb$_2$Te$_{}$ 5/

검색결과 101건 처리시간 0.023초

ReRAM응용을 위한 Ge2Sb2Te5와 Ge8Sb2Te11 기반 MIM구조 박막의 전기적 특성 연구 (A Study on the Electrical Properties of MIM Structures Based on Ge2Sb2Te5 and Ge8Sb2Te11 Thin Films for ReRAM)

  • 장휘종;공헌;여종빈;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제30권3호
    • /
    • pp.144-147
    • /
    • 2017
  • In this study, $Ge_2Sb_2Te_5$ and $Ge_8Sb_2Te_{11}$ were used as an insulator layer to fabricate ReRAM devices. The resistance change is correlated to the appearance or disappearance of a conductivity filament at the surface of the GeSbTe layer. Changes in the electrical properties of ITO/GeSbTe/Ag devices were measured using a I-V-L measurement system. As a result, compared to the $ITO/Ge_8Sb_2Te_{11}/Ag$ device, this $ITO/Ge_2Sb_2Te_5/Ag$ ReRAM device exhibits highly uniform bipolar resistive switching characteristics, such as the operating voltages, and the resistance values.

Ag-첨가 Ge2Sb2Te5 박막의 물성 및 고속 결정화 (Characteristics of Ag-added Ge2Sb2Te5 Thin Films and the Rapid Crystallization)

  • 김성원;송기호;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제21권7호
    • /
    • pp.629-637
    • /
    • 2008
  • We report several experimental data capable of evaluating the amorphous-to-crystalline (a-c) phase transformation in $(Ag)_x(Ge_2Sb_2Te_5)_{1-x}$ (x = 0, 0.05, 0.1) thin films prepared by a thermal evaporation. The isothermal a-c structural phase changes were evaluated by XRD, and the optical transmittance was measured in the wavelength range of $800{\sim}3000$ nm using a UV-vis-IR spectrophotometer. A speed of the a-c transition was evaluated by detecting the reflection response signals using a nano-pulse scanner with 658 nm laser diode (power P = $1{\sim}17$ mW, pulse duration t = $10{\sim}460$ ns). The surface morphology and roughness of the films were imaged by AFM. It was found that the crystallization speed was so enhanced with an increase of Ag content. While the sheet resistance of c-phase $(Ag)_x(Ge_2Sb_2Te_5)_{1-x}$ was similar to that of c-phase $Ge_2Sb_2Te_5$ (i.e., $R_c{\sim}10{\Omega}/{\square}$), the sheet resistance of a-phase $(Ag)_x(Ge_2Sb_2Te_5)_{1-x}$ was found to be lager than that of a-phase $Ge_2Sb_2Te_5$, $R_a{\sim}5{\times}10^6{\Omega}{/\square}$. For example, the ratios of $R_a/R_c$ for $Ge_2Sb_2Te_5$ and $(Ag)_{0.1}(Ge_2Sb_2Te_5)_{0.9}$ were approximately $5{\times}10^5$ and $5{\times}10^6$, respectively.

다중준위 상변환 메모리를 위한 Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 구조의 전기적 특성 연구 (A Study on the Electrical Characteristics of Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 Structure for Multi-Level Phase Change Memory)

  • 오우영;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.44-49
    • /
    • 2022
  • In this paper, we investigated current (I)- and voltage (V)-sweeping properties in a double-stack structure, Ge2Sb2Te5/Ti/W-doped Ge8Sb2Te11, a candidate medium for applications to multilevel phase-change memory. 200-nm-thick and W-doped Ge2Sb2Te5 and W-doped Ge8Sb2Te11 films were deposited on p-type Si(100) substrate using magnetron sputtering system, and the sheet resistance was measured using 4 point-probe method. The sheet resistance of amorphous-phase W-doped Ge8Sb2Te11 film was about 1 order larger than that of Ge2Sb2Te5 film. The I- and V-sweeping properties were measured using sourcemeter, pulse generator, and digital multimeter. The speed of amorphous-to-multilevel crystallization was evaluated from a graph of resistance vs. pulse duration (t) at a fixed applied voltage (12 V). All the double-stack cells exhibited a two-step phase change process with the multilevel memory states of high-middle-low resistance (HR-MR-LR). In particular, the stable MR state is required to guarantee the reliability of the multilevel phase-change memory. For the Ge2Sb2Te5 (150 nm)/Ti (20 nm)/W-Ge8Sb2Te11 (50 nm), the phase transformations of HR→MR and MR→LR were observed at t<30ns and t<65ns, respectively. We believe that a high speed and stable multilevel phase-change memory can be optimized by the double-stack structure of proper Ge-Sb-Te films separated by a barrier metal (Ti).

In-situ ellipsometry를 사용한 광기록매체용 Ge-Sb-Te 다층박막성장의 실시간 제어 (Real time control of the growth of Ge-Sb-Te multi-layer film as an optical recording media using in-situ ellipsometry)

  • 김종혁;이학철;김상준;김상열;안성혁;원영희
    • 한국광학회지
    • /
    • 제13권3호
    • /
    • pp.215-222
    • /
    • 2002
  • 광기록매체용 Ge-Sb-Te다층박막 성장과정을 in-situ 타원계를 사용하여 실시간으로 모니터하여 각 층의 두께를 제어하고 성장된 Ge-Sb-Te 다층박막을 ex-site 분광타원법으로 확인하였다. 보호층인 ZnS-SiO$_2$와 기록층인 Ge$_2$Sb$_2$Te$_{5}$을 단결정실리콘 기층 위에 스퍼터링 방법으로 각각 성장시키면서 구한 타원상수 성장곡선을 분석하여 성장에 따르는 보호층의 균일성 및 기록 층의 밀도변화를 파악하고 이를 기초로 하여 Ge-Sb-Te광기록 다층박막의 두께를 정밀하게 제어하였다. Ge$_2$Sb$_2$Te$_{5}$ 단층박막 시료의 복소굴절율은 eX-Situ 분광타원분석을 통하여 구하였다. 제작된 다층구조는 설정된 다층구조인 ZnS-SiO$_2$(1400$\AA$)$\mid$ GST(200 $\AA$)$\mid$ZnS-SiO$_2$(200$\AA$)와 각 층의 두께 및 전체 두께에서 1.5% 이내에서 일치하는 정확도를 보여주었다.주었다.

나노-펄스 노출에 따른 질소 첨가한 $Ge_2Sb_2Te_5$ 박막의 결정화 속도 평가 (An evaluation on crystallization speed of N doped $Ge_2Sb_2Te_5$ thin films by nano-pulse illumination)

  • 송기호;백승철;김흥수;이현용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.134-134
    • /
    • 2009
  • In this work, we report that crystallization speed as well as the electrical and optical properties about the N-doped $Ge_2Sb_2Te_5$ thin films. The 200-nm-thick N-doped $Ge_2Sb_2Te_5$ thin film was deposited on p-type (100) Si and glass substrate by RF reactive sputtering at room temperature. The amorphous-to-crystalline phase transformation of N-doped $Ge_2Sb_2Te_5$ thin films investigated by X-ray diffraction (XRD). Changes in the optical transmittance of as-deposited and annealed films were measured using a UV-VIS-IR spectrophotometer and four-point probe was used to measure the sheet resistance of N-doped $Ge_2Sb_2Te_5$ thin films annealed at different temperature. In addition, the surface morphology and roughness of the films were observed by Atomic Force Microscope (AFM). The crystalline speed of amorphous N-doped $Ge_2Sb_2Te_5$ films were measured by using nano-pulse scanner with 658 nm laser diode (power : 1~17 mW, pulse duration: 10~460 ns). It was found that the crystalline speed of thin films are decreased by adding N and the crystalline temperature is higher. This means that N-dopant in $Ge_2Sb_2Te_5$ thin film plays a role to suppress amorphous-to-crystalline phase transformation.

  • PDF

PRAM을 위한 $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ (x= 0, 0.05, 0.1) 박막의 특성 (Characteristics of $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ (x= 0, 0.05, 0.1) thin films for PRAM)

  • 김성원;송기호;이현용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.21-22
    • /
    • 2008
  • In the paper, we report several experimental data capable of evaluating the phase transformation characteristics of $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ (x =0, 0.05, 0.1) thin films. The $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ phase change thin films have been prepared by thermal evaporation. The crystallization characteristics of amorphous$Ag_x(Ge_2Sb_2Te_5)_{1-x}$ thin films were investigated by using nano-pulse scanner with 658 nm laser diode (power; 1~17 mW, pulse duration; 10~460 ns) and XRD measurement. It was found that the more Ag is doped, the more crystallization speed was 50 improved. In comparision with $Ge_2Sb_2Te_5$ thin film, the sheet resistance$(R_{amor})$ of the amorphous $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ thin films were found to be lager than that of $Ge_2Sb_2Te_5$ film($R_{amor}$ $\sim10^7\Omega/\square$ and $R_{cryst}$ 10 $\Omega/\square$). That is, the ratio of $R_{amor}/R_{cryst}$ was evaluates to be $\sim10^6$ This is very helpful to writing current reduction of phase-change random acess memory.

  • PDF

비정질 Ge1Se1Te2 과 Ge2Sb2Te5 칼코게나이드 박막의 상변화특성 (Phase Change Properties of Amorphous Ge1Se1Te2 and Ge2Sb2Te5 Chalcogenide Thin Films)

  • 정홍배;조원주;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제19권10호
    • /
    • pp.918-922
    • /
    • 2006
  • Chalcogenide Phase change memory has the high performance necessary for next-generation memory, because it is a nonvolatile memory with high programming speed, low programming voltage, high sensing margin, low power consumption and long cycle duration. To minimize the power consumption and the program voltage, the new composition material which shows the better phase-change properties than conventional $Ge_2Sb_2Te_5$ device has to be needed by accurate material engineering. In the present work, we investigate the basic thermal and the electrical properties due to phase-change compared with chalcogenide-based new composition $Ge_1Se_1Te_2$ material thin film and convetional $Ge_2Sb_2Te_5$ PRAM thin film. The fabricated new composition $Ge_1Se_1Te_2$ thin film exhibited a successful switching between an amorphous and a crystalline phase by applying a 950 ns -6.2 V set pulse and a 90 ns -8.2 V reset pulse. It is expected that the new composition $Ge_1Se_1Te_2$ material thin film device will be possible to applicable to overcome the Set/Reset problem for the nonvolatile memory device element of PRAM instead of conventional $Ge_2Sb_2Te_5$ device.

PRAM을 위한 (GeTe)x(Sb2Te3) (x=0.5, 1, 2, 8) 박막의 물성 및 상변환 특성 연구 (A Study On Properties and Phase Change Characteristics of (GeTe)x(Sb2Te3) (x=0.5, 1, 2, 8) Thin Films for PRAM)

  • 김성원;송기호;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제21권7호
    • /
    • pp.585-593
    • /
    • 2008
  • In this work, we report several experimental data capable of evaluating the phase transformation characteristics of GeSbTe pseudobinary thin films comprehensively utilized as phase change materials. The phase transformation of the GeSbTe thin films was confirmed by XRD measurement from amorphous to hexagonal structure via fee structure except for $Ge_8Sb_2Te_{11}$. In addition, X-ray photoelectron spectra analysis revealed to weaken Ge-Te bond for $Ge_2Sb_2Te_5$ and to strengthen the bonds of all elements for $Ge_8Sb_2Te_{11}$ during the amorphous to crystalline transition. The values of optical energy gap $(E_{OP})$ were around 0.71 and 0.50 eV and the slopes of absorption in extended region (B) were ${\sim}5.1{\times}10^5$ and ${\sim}10{\times}10^5cm^{-1}{\cdot}V^{-1}$ for the amorphous and fcc-crystalline structures, respectively. Finally, the kinetics of amorphous-to-crystalline phase change on the GeSbTe films was characterized using a nano-pulse scanner with 658-nm laser diode (power; $1{\sim}17$ mW, pulse duration; $10{\sim}460$ ns).

상변화 메모리 응용을 위한 MOCVD 방법을 통한 Ge-Sb-Te 계 박막의 증착 및 구조적인 특성분석 (Fabrication and Structural Properties of Ge-Sb-Te Thin Film by MOCVD for PRAM Application)

  • 김난영;김호기;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.411-414
    • /
    • 2008
  • The germanium films were deposited by metal organic chemical vapor deposition using $Ge(allyl)_4$ precursors on TiAlN substrates. Deposition of germanium films was only possible with a presence of $Sb(iPr)_3$, which means that $Sb(iPr)_3$ takes a catalytic role by a thermal decomposition of $Sb(iPr)_3$ for Ge film deposition. Also, as Sb bubbler temperature increases, deposition rate of the Ge films increases at a substrate temperature of $370^{\circ}C$. The GeTe thin films were fabricated by MOCVD with $Te(tBu)_2$ on Ge thin film. The GeTe films were grown by the tellurium deposition at $230-250^{\circ}C$ on Ge films deposited on TiAlN electrode in the presence of Sb at $370^{\circ}C$. The GeTe film growth on Ge films depends on the both the tellurium deposition temperature and deposition time. Also, using $Sb(iPr)_3$ precursor, GeSbTe films with hexagonal structures were fabricated on GeTe thin films. GeSbTe films were deposited in trench structure with 200 nm*120 nm small size.

Ge2Sb2Te5 박막의 상변화에 의한 기계적 물성 변화 (Phase Transformation Effect on Mechanical Properties of Ge2Sb2Te5 Thin Film)

  • 홍성덕;정성민;김성순;이홍림
    • 한국세라믹학회지
    • /
    • 제42권5호
    • /
    • pp.326-332
    • /
    • 2005
  • Phase transformation effects on mechanical properties of $Ge_2Sb_2Te_5$, which is a promising candidate material for Phase Change Random Access Memory (PRAM), were studied. $Ge_2Sb_2Te_5$ thin films, which was thermally annealed with different conditions, were analyzed using XRD, AFM, 4-point probe method and reflectance measurement. As the temperature and the dwelling time increased, crystallity and grain size increased, which enhanced elastic modulus and hardness. Furthermore, N2 doping, which was used for better electrical properties, was proved to decrease elastic modulus and hardness of $Ge_2Sb_2Te_5$.