• Title/Summary/Keyword: Gaussian channel

Search Result 513, Processing Time 0.026 seconds

Introductions of Pre-Rake with Frequency Domain Equalizer and Cyclic Prefix Reduction Method in CDMA/TDD Multi-code Transmission (CDMA/TDD 다중코드 전송에서 주파수 도메인 등화기와 결합된 Pre-Rake 와 Cyclic Prefix 최소화 방법)

  • Lee, Jun-Hwan;Jeong, In-Cheol
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.86-96
    • /
    • 2011
  • In this paper we propose a Pre-rake system applied with a frequency domain equalizer in TDD/CDMA multi-code transmission. The Pre-rake system has been well known technique in TDD/CDMA to make a receiver simple. However, it still has residual losses of path diversity and signal to noise ratio (SNR). However, gathering all the residual paths demands an additional hardware such as a rake combiner at the receiver. For the reason Pre/Post-rake system has already been proposed at up/downlink correlated channel conditionunder the assumption of noisier channel. There is a trade-off between the first purpose of Pre-rake that makes hardware simple at the receiver and the performance improvement. From the point the frequency domain equalizer (FDE) can be considered in Pre/Post-rake to supply the receiver with the flexible equalizing methods with rather reduced complexity compared with time domain rake combiner or equalizers. Pre-rake itself increases the number of multipath, which results from the convolution of Pre-rake filter and wireless channel, and FDE must be well matched to Pre/Post-rake, while it considers the relationship of hardware complexity and the performance. In this paper, the Pre-rake/Post-FDE system is introduced at TDD/CDMA multi-code transmission. In addition, the cyclic prefix reduction method in the proposed system is introduced, and the theoretical analysis to the proposed system is given by assuming Gaussian approximation, and finally the numerical simulation results are provided.

Color Image Rendering using A Modified Image Formation Model (변형된 영상 생성 모델을 이용한 칼라 영상 보정)

  • Choi, Ho-Hyoung;Yun, Byoung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • The objective of the imaging pipeline is to transform the original scene into a display image that appear similar, Generally, gamma adjustment or histogram-based method is modified to improve the contrast and detail. However, this is insufficient as the intensity and the chromaticity of illumination vary with geometric position. Thus, MSR (Multi-Scale Retinex) has been proposed. the MSR is based on a channel-independent logarithm, and it is dependent on the scale of the Gaussian filter, which varies according to input image. Therefore, after correcting the color, image quality degradations, such as halo, graying-out, and dominated color, may occur. Accordingly, this paper presents a novel color correction method using a modified image formation model in which the image is divided into three components such as global illumination, local illumination, and reflectance. The global illumination is obtained through Gaussian filtering of the original image, and the local illumination is estimated by using JND-based adaptive filter. Thereafter, the reflectance is estimated by dividing the original image by the estimated global and the local illumination to remove the influence of the illumination effects. The output image is obtained based on sRGB color representation. The experiment results show that the proposed method yields better performance of color correction over the conventional methods.

Effects of Gradient Switching Noise on ECD Source Localization with the EEG Data Simultaneously Recorded with MRI (MRI와 동시에 측정한 뇌전도 신호로 전류원 국지화를 할 때 경사자계 유발 잡음의 영향 분석)

  • Lee H. R.;Han J. Y.;Cho M. H.;Im C. H.;Jung H. K.;Lee S. Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.108-115
    • /
    • 2003
  • Purpose : To evaluate the effect of the gradient switching noise on the ECD source localization with the EEG data recorded during the MRI scan. Materials and Methods : We have fabricated a spherical EEG phantom that emulates a human head on which multiple electrodes are attached. Inside the phantom, electric current dipole(ECD) sources are located to evaluate the source localization error. The EEG phantom was placed in the center of the whole-body 3.0 Tesla MRI magnet, and a sinusoidal current was fed to the ECD sources. With an MRI-compatible EEG measurement system, we recorded the multi channel electric potential signals during gradient echo single-shot EPI scans. To evaluate the effect of the gradient switching noise on the ECD source localization, we controlled the gradient noise level by changing the FOV of the EPI scan. With the measured potential signals, we have performed the ECD source localization. Results : The source localization error depends on the gradient switching noise level and the ECD source position. The gradient switching noise has much bigger negative effects on the source localization than the Gaussian noise. We have found that the ECD source localization works reasonably when the gradient switching noise power is smaller than $10\%$ of the EEG signal power. Conclusion : We think that the results of the present study can be used as a guideline to determine the degree of gradient switching noise suppression in EEG when the EEG data are to be used to enhance the performance of fMRI.

  • PDF

Performance of CWDM Fabricated by the PLC-AWG Technology (평판형 AWG 기술을 이용한 광대역 파장다중화/역다중화 소자의 제작 및 특성)

  • Moon, H.M.;Kwak, S.C.;Hong, J.Y.;Lee, K.H.;Kim, D.H.;Kim, J.J.;Choi, S.Y.;Lee, J.G.;Lee, J.H.;Lim, K.G.;Kim, J.B.
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.185-189
    • /
    • 2007
  • A novel technology for CWDM (Coarse Wavelength Division Multiplexer) utilizing a PLC (Planar Lightwave Circuit)-AWG (Arrayed Waveguide Grating) fabrication process is proposed. BPM (Beam Propagation Method) Simulation results on the employed parabolic-horn-type input slab waveguide of AWG and the performance of the 20 nm-channel spacing CWDM with flattened passband are presented. Waveguides of $0.75{\triangle}%$ have been used in this experiment and the insertion loss at the peak wavelength is 3.5 dB for a Gaussian spectrum and is 4.8 dB for a flat-top spectrum. The bandwidth at 3 dB is better than 10 nm and 13 nm for Gaussian and flat-top spectra, respectively.

Characteristics of Impulse Radios for Mu1tipath Channels (다중 경로 채널에서 임펄스 라디오의 특징)

  • 이호준;한병칠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1501-1509
    • /
    • 2001
  • Recently, the use of wireless communication systems has been rapidly increasing, which results in a difficult problem in efficient control of limited frequency resources. As a way of solving this problem, the ultra wideband time hopping impulse radio system attracts much attention. The impulse radio system communicates pulse position modulated data using Gaussian monocycle pulses of very short duration less than 1 nsec. Thus the transmitted signal has very low power spectral density and ultra wide bandwidth from near D.C. to a few GHz. It is blown that it hardly interferes with the existing communication systems because of its very low power spectral density. The purpose of this paper is to characterize multipath propagation of the impulse radio signal and to evaluate the performance of the correlator-based receiver for the multipath environments. In this paper, we consider the deterministic two-path model and the statistical indoor multipath model of Saleh and Valenzuela. For the two-path model the output of the correlator with the ideal reference waveform varies according to the relative difference between the indirect path delay and the time interval of PPM, and to the indirect path gains. In addition, the characteristics of bit error rates is measured for the two models through computer simulation. The simulation results indicate that the performance of the impulse radio system depends both on the relative difference between the indirect path delay and the time interval of PPM, and on the indirect path gains. Furthermore, it is observed that the reference signal designed for the AWGN channel can not be applied to the multipath channels.

  • PDF

A Dual-Mode 2.4-GHz CMOS Transceiver for High-Rate Bluetooth Systems

  • Hyun, Seok-Bong;Tak, Geum-Young;Kim, Sun-Hee;Kim, Byung-Jo;Ko, Jin-Ho;Park, Seong-Su
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.229-240
    • /
    • 2004
  • This paper reports on our development of a dual-mode transceiver for a CMOS high-rate Bluetooth system-onchip solution. The transceiver includes most of the radio building blocks such as an active complex filter, a Gaussian frequency shift keying (GFSK) demodulator, a variable gain amplifier (VGA), a dc offset cancellation circuit, a quadrature local oscillator (LO) generator, and an RF front-end. It is designed for both the normal-rate Bluetooth with an instantaneous bit rate of 1 Mb/s and the high-rate Bluetooth of up to 12 Mb/s. The receiver employs a dualconversion combined with a baseband dual-path architecture for resolving many problems such as flicker noise, dc offset, and power consumption of the dual-mode system. The transceiver requires none of the external image-rejection and intermediate frequency (IF) channel filters by using an LO of 1.6 GHz and the fifth order onchip filters. The chip is fabricated on a $6.5-mm^{2}$ die using a standard $0.25-{\mu}m$ CMOS technology. Experimental results show an in-band image-rejection ratio of 40 dB, an IIP3 of -5 dBm, and a sensitivity of -77 dBm for the Bluetooth mode when the losses from the external components are compensated. It consumes 42 mA in receive ${\pi}/4-diffrential$ quadrature phase-shift keying $({\pi}/4-DQPSK)$ mode of 8 Mb/s, 35 mA in receive GFSK mode of 1 Mb/s, and 32 mA in transmit mode from a 2.5-V supply. These results indicate that the architecture and circuits are adaptable to the implementation of a low-cost, multi-mode, high-speed wireless personal area network.

  • PDF

The Effects of PRF and Slot Interval on the PPM-Based Ultra Wide-Band Systems (PPM-기반의 UWB 시스템에 대한 PRF와 슬롯 시간의 영향)

  • 김성준;임성빈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12C
    • /
    • pp.1192-1199
    • /
    • 2003
  • In this paper, we investigate the effect of pulse repetition frequency (PRF) and slot interval on the throughput performance of the ultra wide band (UWB) wireless communication system in multi-path channels, and based on these observations, a data throughput control using PRF and slot interval is proposed for maximizing the effective throughput. Recently, due to many desirable features of the UWB system, it has drawn much attention especially for short-range high-speed data transmission. The UWB system has two parameters to determine its data throughput; pulse repetition frequency and slot interval. In the multi-path channel with additive white Gaussian noise, the UWB system suffers from the inter-pulse interference (IPI) and noise, which result in degradation of system performance. The UWB system can vary the two parameters to maintain and/or improve the system performance. In this paper, we demonstrate the effects of the two parameters on the data throughput of the UWB system in various multi-path indoor channels through computer simulation, and show that the variable data rate approach designed based on the observations is superior to the fixed data rate one in terms of effective throughput performance.

Performance of Initial Timing Acquisition in the DS-UWB Systems with Different Transmit Pulse Shaping Filters (DS-UWB 시스템에서 송신 필터에 따른 초기 동기 획득 성능 비교)

  • Kang, Kyu-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.493-502
    • /
    • 2009
  • In this paper, we compare the performance of initial timing acquisition in direct sequence ultra-wideband(DS-UWB) systems with different transmit pulse shaping filters through extensive computer simulations. Simulation results show that the timing acquisition performance of the DS-UWB system, whose chip rate is 1.32 Gchip/s, employing a rectangular transmit filter is similar to that employing a square root raised cosine(SRRC) filter with an interpolation factor of 4 in the realistic UWB channels(CM1 and CM3) as well as the additive white Gaussian noise(AWGN) channel. Additionally, we present both a 24-parallel digital correlator structure and a 24-parallel processing searcher operating at a 55 MHz system clock, and then briefly discuss the initial timing acquisition procedure. Because we can adopt an 1.32 Gsample/s digital-to-analog(D/A) converter and an 1.32 Gsample/s analog-to-digital(AID) converter in the DS-UWB system by employing the rectangular transmit filter, we have a realistic solution for the DS-UWB chipset development.

Machine Learning-Based Signal Prediction Method for Power Line Communication Systems (전력선 통신 시스템을 위한 머신러닝 기반의 원신호 예측 기법)

  • Sun, Young Ghyu;Sim, Issac;Hong, Seung Gwan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.74-79
    • /
    • 2017
  • In this paper, we propose a system model that predicts the original signal transmitted from the transmitter using the received signal in the power line communication system based on the multi - layer perceptron which is one of the machine learning algorithms. Power line communication system using communication system using power network has more noise than communication system using general communication line. It causes a problem that the performance of the power line communication system is degraded. In order to solve this problem, the communication system model proposed in this paper minimizes the influence of noise through original signal prediction and mitigates the performance degradation of the power line communication system. In this paper, we prove that the original signal is predicted by applying the proposed communication system model to the white noise environment.

Improvement of Performance in the DS-CDMA / DPSK Cellular Mobile Communication System using CCI Canceller and MRC Diversity (DS-CDMA/DPSK 셀룰라 이동통신 시스템에서 간섭 제거기와 최대비 합성 다이버시티에 의한 성능의 개선)

  • 우병훈;오창헌;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.1
    • /
    • pp.22-30
    • /
    • 1994
  • The error probability of the DS-CDMA / DPSK cellular mobile communication system with CCI canceller and MRC diversity reception technique has been analyzed in the cellular radio channel which is characterized by AWGN, Multi-User Interference(MUI) and m-distribution fading. System capacity i. e., number of user per cell has been derived and the evaluated results are shown in figures as a function of PN code sequence length, fading index, BER, number of diversity branches and $E_b/N_o$, Here, the voice activity factor is assumed to be 3/8, the number of sectors in a cell 3 and Multi-User Iner- ference is modeled as Gaussian process.

  • PDF