• Title/Summary/Keyword: Gauss method

Search Result 422, Processing Time 0.034 seconds

Wind velocity simulation of spatial three-dimensional fields based on autoregressive model

  • Gao, Wei-Cheng;Yu, Yan-Lei
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.241-256
    • /
    • 2008
  • This paper adopts autoregressive (AR) model to simulate the wind velocity of spatial three-dimensional fields in accordance with the time and space dependent characteristics of the 3-D fields. Based on the built MATLAB programming, this paper discusses in detail the issues of the AR model deduced by matrix form in the simulation and proposes the corresponding solving methods: the over-relaxation iteration to solve the large sparse matrix equations produced by large number of degrees of freedom of structures; the improved Gauss formula to calculate the numerical integral equations which integral functions contain oscillating functions; the mixed congruence and central limit theorem of Lindberg-Levy to generate random numbers. This paper also develops a method of ascertaining the rank of the AR model. The numerical examples show that all those methods are stable and reliable, which can be used to simulate the wind velocity of all large span structures in civil engineering.

A receding contact problem of a layer resting on a half plane

  • Karabulut, Pembe Merve;Adiyaman, Gokhan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • In this paper, a receding contact problem for an elastic layer resting on a half plane is considered. The layer is pressed by two rectangular stamps placed symmetrically. It is assumed that the contact surfaces are frictionless and only compressive traction can be transmitted through the contact surfaces. In addition the effect of body forces is neglected. Firstly, the problem is solved analytically based on theory of elasticity. In this solution, the problem is reduced into a system of singular integral equations in which half contact length and contact pressures are unknowns using boundary conditions and integral transform techniques. This system is solved numerically using Gauss-Jacobi integral formulation. Secondly, two dimensional finite element analysis of the problem is carried out using ANSYS. The dimensionless quantities for the contact length and the contact pressures are calculated under various stamp size, stamp position and material properties using both solutions. The analytic results are verified by comparison with finite element results.

CERTAIN DECOMPOSITION FORMULAS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS pFq AND SOME FORMULAS OF AN ANALYTIC CONTINUATION OF THE CLAUSEN FUNCTION 3F2

  • Choi, June-Sang;Hasanov, Anvar
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.107-116
    • /
    • 2012
  • Here, by using the symbolical method introduced by Burchnall and Chaundy, we aim at constructing certain expansion formulas for the generalized hypergeometric function $_pF_q$. In addition, using our expansion formulas for $_pF_q$, we present formulas of an analytic continuation of the Clausen hypergeometric function $_3F_2$, which are much simpler than an earlier known result. We also give some integral representations for $_3F_2$.

Constrained Dynamic Responses of Structures Subjected to Earthquake

  • Eun, Hee Chang;Lee, Min Su
    • Architectural research
    • /
    • v.8 no.2
    • /
    • pp.37-42
    • /
    • 2006
  • Starting from the quadratic optimal control algorithm, this study obtains the relation of the performance index for constrained systems and Gauss's principle. And minimizing a function of the variation in kinetic energy at constrained and unconstrained states with respect to the velocity variation, the dynamic equation is derived and it is shown that the result compares with the generalized inverse method proposed by Udwadia and Kalaba. It is investigated that the responses of a 10-story building are constrained by the installation of a two-bar structure as an application to utilize the derived equations. The structural responses are affected by various factors like the length of each bar, damping, stiffness of the bar structure, and the junction positions of two structures. Under an assumption that the bars have the same mass density, this study determines the junction positions to minimize the total dynamic responses of the structure.

THE TRAPEZOIDAL RULE WITH A NONLINEAR COORDINATE TRANSFORMATION FOR WEAKLY SINGULAR INTEGRALS

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.957-976
    • /
    • 2004
  • It is well known that the application of the nonlinear coordinate transformations is useful for efficient numerical evaluation of weakly singular integrals. In this paper, we consider the trapezoidal rule combined with a nonlinear transformation $\Omega$$_{m}$(b;$\chi$), containing a parameter b, proposed first by Yun [14]. It is shown that the trapezoidal rule with the transformation $\Omega$$_{m}$(b;$\chi$), like the case of the Gauss-Legendre quadrature rule, can improve the asymptotic truncation error by using a moderately large b. By several examples, we compare the numerical results of the present method with those of some existing methods. This shows the superiority of the transformation $\Omega$$_{m}$(b;$\chi$).TEX>).

A Study on the Response of Fishing Vessels in Seas according to various Tonnage (어반의 크기 변화에 따른 실반 응답특성에 관한 고찰)

  • 강일권;윤점동;조효제
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.3
    • /
    • pp.31-42
    • /
    • 1996
  • It is important to investigate the hull response of a fishing vessel in waves to ensure the safety of it and to keep excellent sea-keeping qualities. For this purpose, we measured the response of fishing vessels in waves using real sea experimental measuring system. We analyze the experimental data by statistical method and spectral analysis to get the characteristics of the response of vessels which have different tonnage. In this real sea experiment, we use three stern trawlers which are the training ship in university. We know that the distribution of experimental response have Gauss distribution and Rayleigh distribution and smaller vessels have larger response.

  • PDF

A Study on the Distribution of Temperature by Moving Heat Source during Welding (용접중 이동하는 열원에 의한 온도분포에 관한 연구)

  • 왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.51-68
    • /
    • 1982
  • A method of calculation of temperature distribution during welding was studied and compared with the existing formulas and experimental results. In contrast to the existing formulas which are founded on the suppositions that the heat source is a point and that the dimensions of welded pieces are infinite, we tried to make the distribution of calorific density of heat source approach reality more closely, so we considered it as a normal distribution of Gauss, and we presented the formulas for calculation of temperature during welding. We also used the principle of superposition for the temperature calculations of finite welded pieces. We compared the formulas presented in this paper with the existing formulas by calculations for the welding of various materials, and considerable differences around the heat source were convinced. The thermal cycles of various points were traced through the welding experiments for the mild steel, and they were compared with the results of calculations.

  • PDF

ON FINITE SUMMATION FORMULAE FOR THE H-FUNCTION OF TWO VARIABLES

  • Gupta, K.C.;Garg, O.P.
    • Kyungpook Mathematical Journal
    • /
    • v.18 no.2
    • /
    • pp.211-215
    • /
    • 1978
  • In the present paper, we obtain two new and interesting finite summation formulae for the H-function of two variables in a very neat and elegant form. The novel feature of the paper is that the method used here in deriving these formulae is simple and direct and does not impose heavy restrictions on the parameters involved. On account of the most general nature of the H-function of two variables, a number of related finite summation formulae for a number of other useful functions can also be obtained as special cases of our results. As an illustration, we have obtained here from our main results, the corresponding finite summation formulae for $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function. Appell's function and Gauss' hypergeometric function which are also believed to be new.

  • PDF

Serendipitous Functional Relations Deducible from Certain Generalized Triple Hypergeometric Functions

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.109-136
    • /
    • 2012
  • We aim at presenting certain unexpected functional relations among various hypergeometric functions of one or several variables (for example, see the identities in Corollary 5) by making use of Carlson's method employed in his work (Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2)(1970), 232-242).

A Study on a Detachment of a Permanent Magnet Wheel for a Wall-Climbing Mobile Robot using Magnetic Inducement (자력선 유도를 이용한 벽면이동로봇용 영구자석바퀴의 탈착에 관한 연구)

  • Han, Seung-Chul;Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.143-149
    • /
    • 2002
  • Robot are necessary to automate the work on a vertical plane of work piece to produce a large structure like a ship, so that a permanent magnet wheel has been attempted to be used for a mobile robot. Its adhesive power was enhanced by restricting the occurrence direction of magnetic flow. Furthermore a method which weakened the adhesive force was developed for easy detachement of the wheel by changing magnetic flow with metal pin. To measure the characteristics of the adhesive and detaching farces, a load call and a gaussmeter were used. The result showed that the adhesive power was reduced to 1/3 of normal state by using 4 inducing pins.