• Title/Summary/Keyword: Gate-Cycle

Search Result 155, Processing Time 0.022 seconds

Design of Charge Pump Circuit for Intelligent Power Module of Floating Gate Power Supply (Intelligent Power Module의 플로팅 게이트 전원 공급을 위한 전하 펌프 회로의 설계)

  • Lim, Jeong-Gyu;Kim, Seok-Hwan;Seo, Eun-Kyung;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.421-423
    • /
    • 2005
  • A bootstrap circuit for floating power supply has the advantage of being simple and inexpensive. However, the duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. Hence, this paper deals with a design of charge pump circuit for a floating gate power supply of an IPM. The operation of the proposed circuit applied by three-phase inverter system for driving induction motor are verified through the experiments.

  • PDF

Environmental Impact Evaluation of Virgin Pulp Using Life Cycle Assessment Methodology (LCA기법을 이용한 천연펄프의 환경 영향 평가)

  • 김형진;조병묵;황용우;박광호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Life Cycle Assessment for the pulp, which is mainly used as the raw material of fine paper, base paper for food packaging and paper cup, has been carried out in this study to consider environmental aspects by quantifying the environmental emission and to evaluate its environmental impact potential. The system boundary was selected from cradle to gate stage(raw material acquisition, transportation of raw material and product manufacturing) of the product. Environmental impact was divided into 8 categories considering Korean situation: abiotic resource depletion, global warming, ozone depletion, acidification, eutrophication, photochemical oxidant creation, ecotoxicity and human toxicity. In Life Cycle Impact Assessment(LCIA) methodology phase, Ecopoint, Eco-indicator 95 and Korean eco-indicator were used and the results carried out by each methodology were compared. The results from this study were also compared with those of foreign study to verify the reliability of the results. The results of the study could be utilized as the basic data for Environmental Management System(EMS), Design for Environment(DfE) and Type III eco-labeling in the paper and paper-related industry.

A design of High-Profile Intra Prediction module for H.264 (H.264 High-Profile Intra Prediction 모듈 설계)

  • Suh, Ki-Bum;Lee, Hye-Yoon;Lee, Yong-Ju;Kim, Ho-Eui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2045-2049
    • /
    • 2008
  • In this paper, we propose an novel architecture for H.264 High Profile Encoder Intra Prediction module. This designed module can be operated in 306 cycle for one-macroblock. To verify the Encoder architecture, we developed the reference C from JM 13.2 and verified the our developed hardware using test vector generated by reference C. We adopt plan removal and SAD calculation to reduce the Hardware cost and cycle. The designed circuit can be operated in 133MHz clock system, and has 250K gate counts using TSMC 0.18 um process including SRAM memory.

500-days Continuous Observation of Nutrients, Chlorophyll Suspended Solid and Salinity in the Keum Estuary, Korea (금강 하구역에서 영양염류, 엽록소, 부유물질과 염분변화에 대한 500일간의 연속관측)

  • Lee, Yong-Hyuk;Yang, Jae-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • We have monitored nutrients, chlorophyll, suspended solids, and salinity in the Keum Estuary to understand the temporal fluctuation of oceanographic parameters and to illustrate any variation due to the gate operation of the Keum River Dike from June, 1995 to September, 1996, approximately for 500 days. Tidal range is used as the key factor to explain the fluctuations and atmospheric parameters such as air temperature, wind velocity and rainfall are also used supplementally. The fresh water discharge was selected as another major impact on the estuarine environment due to the gate operation of the Keum Dike. In addition, daily variation by tidal cycle was investigated twice in April and July, 1996. In diurnal variation, salinity was positively correlated with tidal elevation, whereas negatively correlated with nutrients. Relatively high suspended solid and chlorophyll contents were found in the period between high and low tide. In 500 days continuous observations, salinity was negatively correlated with the volume of fresh-water discharge, but positively correlated with nutrients. A major chlorophyll bloom occurred in spring. A similar pattern of variation was observed between suspended solid and the neap-spring tidal cycle. In comparison with the data of the Keurn Estuary before the gate operation of the Keum River dike, fresh-water discharge predominated other environmental factors during the rainy season. In addition, the velocity of tidal current and the concentration of suspended solid were decreased, while nutrients and chlorophyll contents were increased.

  • PDF

A Practical New Technology of Removing Algal Bloom: K-water GATe Water Combine (조류(藻類)제어를 위한 실용적 신기술 : K-water 녹조수상콤바인)

  • Shin, Jae-Ki;Kim, Hojoon;Kim, Sea Won;Chong, Sun-A;Moon, Byong Cheun;Lee, Sanghyup;Choi, Jae Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.214-218
    • /
    • 2014
  • We introduce a technical equipment of GATe (Green (algae)-tide) water combine developed by K-water. The GATe water combine consists of five modules: main body and buoyant, transfer hopper, screen conveyer, sludge remover, and separator of algae and waste. Also a sprinkler, as the pre-treatment step if necessary, is equipped to the device to spread out environmental-friendly algaecide under the circumstance that the level of algal bloom does not reach to the scum-forming condition. The overall module system of this device is very simple. Based on the field test, the device covers surface area of ca. $500,000m^2day^{-1}$ during the period from May to July, and treats water volume as much as $500,000m^3day^{-1}$ in spite of some variation depending on the water quality condition. The removal efficiency of the device appeared to be over 90%. In addition, the operating duration of the device was able to expand to cover the period between March and November. We expect this new technology can be used to solve algal bloom problems in drinking water resource and public water area.

A High-Speed Dual-Modulus Prescaler Using Selective Latch Technique (Selective Latch Technique을 이용한 고속의 Dual-Modulus Prescaler)

  • 김세엽;이순섭김수원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.779-782
    • /
    • 1998
  • This paper describes a high-speed Dual-modulus Prescaler (DMP) for RF mobile communication systems with pulse remover using selective latch technique. This circuit achieves high speed and low power consumption by reducing full speed flip-flops and using a selective latch. The proposed DMP consists of only one full speed flip-flop, a selective latch, conventional flip-flops, and a control gate. In order to ensure the timing of control signal, duty cycle problem and propagation delay must be considered. The failling edgetriggered flip-flops alleviate the duty cycle problem andthis paper shows that the propagation delay of control signal doesn't matter. The maximum operating frequency of the proposed DMP with 0.6um CMOS technology is up to 2.2㎓ at 3.3V power supply and the circuit consumes 5.24mA.

  • PDF

High Step-Up Converter with Hybrid Structure Based on One Switch

  • Hwu, K.I.;Peng, T.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1566-1577
    • /
    • 2015
  • A novel high step-up converter is presented herein, which combines the conventional buck-boost converter, the charge pump capacitor and the coupling inductor. By doing so, a quite high voltage conversion ratio due to not only the turns ratio but also the duty cycle, so as to increase design feasibility. It is noted that the denominator of the voltage conversion ratio is the square of one minus duty cycle. Above all, there is no voltage spike across the switch due to the leakage inductance and hence no passive or active snubber is needed, and furthermore, the used switch is driven without isolation and hence the gate driving circuit is relatively simple, thereby upgrading the industrial application capability of this converter. In this paper, the basic operating principles and the associated mathematical deductions are firstly described in detail, and finally some experimental results are provided to demonstrate the effectiveness of the proposed high step-up converter.

Prediction of Pollutant Transport by Dispersion Model on Estuary (확산모형에 의한 하구에서의 오염물질이동 예측(수공))

  • 박영욱;박상현;천만복;이봉훈;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.371-377
    • /
    • 2000
  • Environmental impact on a land reclamation project, Hwaong tidal barrier was studied using the dispersion and advection model to predict the influence of polluted water discharged from freshwater reservior. The simulation results show that the distribution of concentration by influence of polluted water discharged during a tidal cycle appeared to be extinguished at atmost all points after two tidal cycle. Peak concentration near the sluice gate is found out to be higher during the spring tide than neap tide. Equi-concentration contour line appeared to distributed a longer according to line of sea dike in spring tide than neap tide. The reasons is because influence by currents of northwest direction is a stronger, compared to spring tide and neap tide in the flood tide.

  • PDF

Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant

  • Joo, Yong-Jin;Kim, Mi-Yeong;Park, Se-Ik;Seo, Dong-Kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.415-419
    • /
    • 2016
  • As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.

A Systems Engineering Approach to Real-Time Data Communication Network for the APR1400

  • Ibrahim, Ahmad Salah;Jung, Jae-cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Concept development of a real-time Field Programmable Gate Array (FPGA)-based switched Ethernet data communication network for the Man-Machine Interface System (MMIS) is presented in this paper. The proposed design discussed in this research is based on the systems engineering (SE) approach. The design methodology is effectively developed by defining the concept development stage of the life-cycle model consisting of three successive phases, which are developed and discussed: needs analysis; concept exploration; and concept definition. This life-cycle model is used to develop an FPGA-based time-triggered Ethernet (TTE) switched data communication network for the non-safety division of MMIS system to provide real-time data transfer from the safety control systems to the non-safety division of MMIS and between the non-safety systems including control, monitoring, and information display systems. The original IEEE standard 802.3 Ethernet networks were not typically designed or implemented for providing real-time data transmission, however implementing a network that provides both real-time and on-demand data transmission is achievable using the real-time Ethernet technology. To develop the design effectively, context diagrams are implied. Conformance to the stakeholders needs, system requirements, and relevant codes and standards together with utilizing the TTE technology are used to analyze, synthesize, and develop the MMIS non-safety data communication network of the APR1400 nuclear power plant.