High Step-Up Converter with Hybrid Structure Based on One Switch

K. I. Hwu ${ }^{\dagger}$ and T. J. Peng*

Abstract

A novel high step-up converter is presented herein, which combines the conventional buck-boost converter, the charge pump capacitor and the coupling inductor. By doing so, a quite high voltage conversion ratio due to not only the turns ratio but also the duty cycle, so as to increase design feasibility. It is noted that the denominator of the voltage conversion ratio is the square of one minus duty cycle. Above all, there is no voltage spike across the switch due to the leakage inductance and hence no passive or active snubber is needed, and furthermore, the used switch is driven without isolation and hence the gate driving circuit is relatively simple, thereby upgrading the industrial application capability of this converter. In this paper, the basic operating principles and the associated mathematical deductions are firstly described in detail, and finally some experimental results are provided to demonstrate the effectiveness of the proposed high step-up converter.

Keywords: High step-up converter, Charge pump, Coupling inductor, One switch

1. Introduction

As generally recognized, the boost converter is widely used in the renewable energy system, in the standby power source, in the car power source, in the 3C (Computer, Communication, Consumer-Electronics) product, etc. The purpose of the boost converter is used to transfer the low voltage level to the stable high voltage level, so as to stabilize the overall system. Therefore, the traditional boost converter is used as a power stage, which boosts the input voltage to a 400 V dc voltage to feed the standby power source, or to generate a grid-connected 220 V ac voltage via the DC-AC inverter. However, the traditional boost converter has the voltage conversion ratio about four. This is because the non-ideal properties due to parasitic components make the voltage conversion ratio deteriorated [1, 2].

Consequently, many kinds of voltage-boosting techniques have been presented, including several inductors which are magnetized and then pump the stored energy into the output with all inductors connected in series [3], coupled inductors with turns ratios $[4-8,9,10,14,18,19]$, voltage superposition based on switching capacitors [1217], auxiliary transformers with turns ratios [11], etc. In [8] and [9], the output terminal is floating, thereby increasing application complexity. In [6, 7] and [10], these converters contain too many components, thereby making the converters relatively complicated. In [3-10, 14-16, 18] and [19], the output currents are pulsating, thus causing the output voltage ripples to tend to be large. In [11-13] and [17], even though the output currents are non-pulsating,

[^0]their voltage conversion ratios are not high enough.
Therefore, a novel high step-up converter is presented herein, which combines the traditional buck-boost converter, the charge pump and the coupling inductor. This converter possesses relatively high voltage conversion ratio, the designer can use the turns ratio to vary the voltage conversion ratio so as to make the circuit design relatively elastic. Above all, the used power switch is not floating, so as to make the gate driving circuit quite simple. Furthermore, there is no voltage spike across the switch due to the leakage inductance. In this paper, the basic operating principles and the associated mathematical deductions are firstly depicted in detail, and eventually some experimental results are provided to verify the effectiveness of the proposed high step-up converter.

2. Overall System Configuration

Fig. 1 shows the proposed high step-up converter, which is constructed by the traditional buck-boost converter, and the coupling inductor and charge pump capacitor circuit. The traditional buck-boost converter contains one switch S_{1}, two diodes D_{1} and D_{4}, one inductor L_{1}, and one energy-

Fig. 1. Proposed high step-up converter with variables added.
transferring capacitor C_{1}. The coupling inductor and charge pump capacitor circuit contains one switch S_{1}, three diodes D_{2}, D_{3} and D_{4}, one charge pump capacitor C_{2}, one output capacitor C_{o}, and one coupling inductor with turns ratio of $N_{1}: N_{2}$, where N_{1} and N_{2} are the primary-side turns and the secondary-side turns, respectively. It is noted that the coupling inductor is built up by one magnetizing inductor L_{m} and one ideal transformer.

3. Basic Operating Principles

Prior to taking up this section, there are some assumptions and symbols to be given as follows in Fig. 1: (i) the coupling coefficient k is equal to one, that is, the primary and secondary leakage inductances are negligible; (ii) the dc input and output voltages are defined to be V_{i} and V_{o}, respectively; (iii) the dc input and output currents are signified by I_{i} and I_{o}, respectively; (iv) the current in S_{1} is indicated by $i_{D S 1}$; (v) the currents in D_{1}, D_{2}, D_{3} and D_{4} are denoted by $i_{D 1}, i_{D 2}, i_{D 3}$ and $i_{D 4}$, respectively; (vi) the values of C_{1} and C_{2} are large enough to keep the voltages across themselves constant at some values, equal to $V_{C 1}$ and $V_{C 2}$, respectively; (vii) the current flowing through L_{1} is expressed by $i_{L 1}$; (viii) the currents in the N_{1} and N_{2} windings are signified by i_{1} and i_{2}, respectively; (ix) the current in L_{m} is indicated by $i_{L m}$; (x) i_{3} is the sum of i_{1} and i_{m}; (xi) the gate driving signal for S_{1} is denoted by $v_{g s 1}$; (xii) the voltages on S_{1} is represented by $v_{D S 1}$; (xiii) the voltage across L_{1} is expressed by $v_{L 1}$; (xiv) the voltage across L_{m} or the voltage across the N_{1} winding is expressed by $v_{N 1}$; (xv) the voltage on the N_{2} winding indicated by $v_{N 2}$; (xvi) the turns ratio of n is equal to N_{2} / N_{1}; and (xvii) the duty cycle D is the quiescent dc duty cycle created from the controller.

3.1 CCM Operation

Since the converter operates in the continuous conduction

Fig. 2. Illustrated waveforms related to the proposed converter.
mode (CCM), there are two operating states with the illustrated waveforms as shown in Fig. 2.

3.1.1 State $1\left(t_{0} \leq t \leq t_{1}\right)$

As shown in Fig. 3(a), S_{1} is turned on. Hence, the voltage across L_{1} is equal to V_{i}, thereby causing L_{1} to be magnetized. At the same time, D_{1} and D_{3} are turned off, but D_{2} and D_{4} are turned on. Accordingly, the voltage across $L_{m}, v_{N 1}$, is equal to the input voltage V_{i} plus the voltage across $C_{1}, V_{C 1}$, thereby causing L_{m} to be magnetized. In addition, C_{2} is charged by $V_{i}+V_{C 1}+v_{N 2}$. Therefore,

$$
\left\{\begin{array}{l}
v_{L 1}=V_{i} \tag{1}\\
v_{N 1}=V_{C 1}+V_{i}
\end{array}\right.
$$

3.1.2 State $2\left(t_{1} \leq t \leq t_{0}+T_{s}\right)$

As shown in Fig. 3(b), S_{1} is turned off. Hence, D_{2} and D_{4} are turned off, but D_{1} and D_{3} are turned on. At the same time, the voltage across $L_{1}, v_{L 1}$, is equal to $-V_{C 1}$, thereby causing L_{1} to be demagnetized and to energize the output, whereas the voltage across $L_{m}, v_{N 1}$, is equal to $V_{i}+V_{C 1}+V_{C 2}-v_{N 2}-V_{o}$, thereby causing L_{m} to be demagnetized. Therefore,

$$
\left\{\begin{array}{l}
v_{L 1}=-V_{C 1} \tag{2}\\
v_{N 1}=-v_{N 2}+V_{C 2}+V_{C 1}+V_{i}-V_{o}
\end{array}\right.
$$

Since the turns ratio n is equal to N_{2} / N_{1}, (2) can be rewritten to be

Fig. 3. Current flows in: (a) state 1; (b) state 2.

$$
\left\{\begin{array}{l}
v_{L 1}=-V_{C 1} \tag{3}\\
v_{N 1}=\frac{V_{C 2}+V_{C 1}+V_{i}-V_{o}}{1+n}
\end{array}\right.
$$

Applying the voltage-second balance to L_{1}, we can obtain the following equation:

$$
\begin{equation*}
V_{i} \times D+\left(-V_{C 1}\right) \times(1-D)=0 \tag{4}
\end{equation*}
$$

Eq. (4) can be rewritten to be

$$
\begin{equation*}
V_{C 1}=\frac{D}{1-D} \times V_{i} \tag{5}
\end{equation*}
$$

By applying the voltage-second balance to L_{m}, we can obtain the following equation:

$$
\begin{equation*}
\left(V_{C 1}+V_{i}\right) \times D+\frac{V_{C 2}+V_{C 1}+V_{i}-V_{o}}{1+n} \times(1-D)=0 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{C 2}=(1+n) \times\left(V_{i}+V_{C 1}\right) \tag{7}
\end{equation*}
$$

Substituting (5) and (7) into (6) yields the voltage conversion ratio of the proposed high step-up converter:

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=\frac{2+n-D}{(1-D)^{2}} \tag{8}
\end{equation*}
$$

3.2 Comparison of flyback, forward and proposed converters

As generally acknowledged, the duty cycle of the flyback converter does not approach to one due to the parasitic parameters of components, whereas the duty cycle of the forward converter also does not approach to one due to a suitable time slot needed to reset the magnetizing inductance. Based on the aforementioned, the comparison in voltage conversion ratio between the flyback converter, the forward converter and the proposed converter is under the condition that each converter operates in the continuous conduction mode (CCM) with the turns ratio set to 3 and the duty cycle set at 0.75 . Therefore, the voltage conversion ratios for the flyback converter, the forward converter and the proposed converter are $2.25,9$, and 68 , respectively. That is, the proposed converter has a quite high voltage conversion ratio as compared with the flyback converter and forward converter.

3.3 CCM with leakage inductance considered

By considering the leakage inductance $L_{l k}$ as shown in Fig. 4, in state 1, the corresponding equation of $v_{N 1}$ expressed by (1) will be modified to

Fig. 4. Proposed high step-up converter with leakage inductance considered.

$$
\begin{equation*}
v_{N 1}=\left(V_{i}+V_{C 1}\right) \times \frac{L_{m}}{L_{m}+L_{l k}}=k\left(V_{i}+V_{C 1}\right) \tag{9}
\end{equation*}
$$

where $k=L_{m} /\left(L_{m}+L_{l k}\right)$.
And, in state 2 , the corresponding equation of $v_{N 1}$ will be modified to

$$
\begin{align*}
v_{N 1} & =\left(-V_{N 2}+V_{C 2}+V_{C 1}+V_{i}-V_{o}\right) \times \frac{L_{m}}{L_{m}+L_{l k}} \\
& =k\left[\frac{(L+n k)\left(V_{C 1}+V_{i}\right)-V_{o}}{1+n}\right] \tag{10}
\end{align*}
$$

By applying the voltage balance to the magnetizing inductor based on (9) and (10), the resulting voltage conversion ratio can be obtained to be

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=\frac{2+n(D+k-D k)-D}{(1-D)^{2}} \tag{11}
\end{equation*}
$$

From (11), as the value of k is close to one, the voltage conversion ratio is retrieved to (8).

3.3 BCM operation

Since there are two inductors L_{1} and L_{m} in the proposed high step-up converter, the corresponding boundary conduction mode (BCM) conditions will be discussed in the following, so as to make design of L_{1} and L_{m} relatively easy. It is assumed that there is no power loss, i.e., the input power is equal to the output power.

3.3.1 BCM Condition for L_{1}

Based on (8), the dc input current I_{i} can be expressed as

$$
\begin{equation*}
I_{i}=\frac{2+n-D}{(1-D)^{2}} \times I_{o} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{o}=\frac{V_{o}}{R_{o}} \tag{10}
\end{equation*}
$$

Substituting (10) into (9) yields

$$
\begin{equation*}
I_{i}=\frac{2+n-D}{(1-D)^{2}} \times \frac{V_{o}}{R_{o}} \tag{11}
\end{equation*}
$$

Since the dc current in $L_{1}, I_{L 1}$, is equal to I_{i}, (11) can be rewritten to be

$$
\begin{equation*}
I_{L 1}=\frac{2+n-D}{(1-D)^{2}} \times \frac{V_{o}}{R_{o}} \tag{12}
\end{equation*}
$$

Also, the current ripple of $i_{L 1}$, denoted by $\Delta i_{L 1}$, can be expressed to be

$$
\begin{equation*}
\Delta i_{L 1}=\frac{v_{L 1} \Delta t}{L_{1}}=\frac{V_{i} D T_{s}}{L_{1}} \tag{13}
\end{equation*}
$$

Hence, the condition for L_{1} operating in BCM is

$$
\begin{align*}
& 2 I_{L 1}=\Delta i_{L 1} \\
\Rightarrow & \frac{2 \times(2+n-D)}{(1-D)^{2}} \frac{V_{o}}{R_{o}}=\frac{V_{i} D T_{s}}{L_{1}} \\
\Rightarrow & \frac{2 L_{1}}{R_{o} T_{s}}=D\left(\frac{(1-D)^{2}}{2+n-D}\right)^{2} \tag{14}\\
\Rightarrow & K_{1}=K_{\text {crit1 }}(D)
\end{align*}
$$

where

$$
\begin{equation*}
K_{1}=\frac{2 L_{1}}{R_{o} T_{s}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{c r i t 1}(D)=D\left(\frac{(1-D)^{2}}{2+n-D}\right)^{2} \tag{16}
\end{equation*}
$$

Thus, if K_{1} is larger than $K_{\text {crit1 }}(D)$, then L_{1} operates in CCM; if K_{1} is smaller than $K_{\text {crit1 }}(D)$, then L_{1} operates in DCM.

3.3.2 BCM Condition for \boldsymbol{L}_{m}

The dc portion of the current in the magnetizing inductor L_{m}, denoted by $I_{L m}$, can be represented by

$$
\begin{equation*}
I_{L m}=\frac{1+n}{1-D} \times I_{o} \tag{17}
\end{equation*}
$$

Substituting (10) into (17) yields

$$
\begin{equation*}
I_{L m}=\frac{1+n}{1-D} \times \frac{V_{o}}{R_{o}} \tag{18}
\end{equation*}
$$

Also, the current ripple of $i_{L m}$, denoted by $\Delta i_{L m}$, can be expressed to be

$$
\begin{equation*}
\Delta i_{L m}=\frac{v_{N 1} \Delta t}{L_{m}}=\frac{\left(V_{C 1}+V_{i}\right) \times D T_{s}}{L_{m}} \tag{19}
\end{equation*}
$$

Substituting (5) into (19) yields

$$
\begin{equation*}
\Delta i_{L m}=\frac{D \times V_{i} \times T_{s}}{(1-D) \times L_{m}} \tag{20}
\end{equation*}
$$

Hence, the condition for L_{m} operating in BCM is

$$
\begin{align*}
& 2 I_{L m}=\Delta i_{L m} \\
& \Rightarrow 2\left(\frac{1+n}{1-D} \times \frac{V_{o}}{R_{o}}\right)=\frac{D \times V_{i} \times T_{s}}{(1-D) \times L_{m}} \\
& \Rightarrow \frac{2(1+n) L_{m}}{R_{o} T_{s}}=\frac{D(1-D)^{2}}{2+n-D} \tag{21}\\
& \Rightarrow K_{2}=K_{\text {crit2 }}(D) \\
& K_{2}=\frac{2(1+n) L_{m}}{R_{o} T_{s}} \tag{22}\\
& K_{\text {crit2 }}(D)=\frac{D(1-D)^{2}}{2+n-D} \tag{23}
\end{align*}
$$

Accordingly, K_{2} is larger than $K_{\text {crit2 }}(D)$, then L_{m} operates in CCM; if K_{2} is smaller than $K_{\text {crit1 }}(D)$, then L_{m} operates in DCM.

3. Design Considerations

Prior to taking up this section, there are some system specifications and key components to be given as follows: (i) the range of the dc input voltage V_{i} is from 20 V to 28 V with 24 V rated; (ii) the rated dc output voltage V_{o} is 400 V ; (iii) the rated dc output power $P_{o, \text { rated }}$ is 200 W , i.e., the rated dc output current $I_{o, \text { rated }}$ is 0.5 A ; (iv) the minimum dc output power $P_{o, \min }$ is 40 W , i.e., the minimum dc output current $I_{o, \text { min }}$ is 0.1 A ; (v) the switching frequency f_{s} is 50 kHz , i.e., the switching period T_{s} is $20 \mu \mathrm{~s}$; and (vi) the product name of the control IC is MC34060A. It is noted that the proposed converter operates in CCM above the minimum dc output current. In addition, Tables 1 and 2 show the voltage and current stresses of the switch and diodes, and the specifications for the components used in the main power stage of the proposed converter.

Table 1. Voltage and current stresses of the switch and diodes

	S_{1}	D_{1}	D_{2}	D_{3}	D_{4}
Voltage stress (V)	400	68.1	234	400	342
Current stress (A)	15.5	8.91	4.87	1.68	11.3

Table 2. Components used in the main power stage of the proposed converter

Components	Specifications
S_{1}	STP30NM50, $V_{D S}=500 \mathrm{~V}, I_{D}=27 \mathrm{~A}, R_{o n}=115 \mathrm{~m} \Omega$ at 14 A
D_{1}	V40100C, $V_{R}=100 \mathrm{~V}, V_{F}=0.38 \mathrm{~V}$ at $I_{F}=5 \mathrm{~A}$
D_{2}, D_{4}	ETH3006, $V_{R}=600 \mathrm{~V}, V_{F}=2 \mathrm{~V}$ at $I_{F}=30 \mathrm{~A}$
D_{3}	STPSC806D, $V_{F}=1.4 \mathrm{~V}$ at $I_{F}=8 \mathrm{~A}$
L_{1}	CC4220/JPP44A, 38 turns, 1.622 mm air-gap
L_{m}	CC4220/JPP44A, $N_{1}=N_{2}=48$ turns, 0.628 mm air-gap
C_{1}	RUBYCON, $2200 \mu \mathrm{~F}$
C_{2}	NICHICON, $220 \mu \mathrm{~F}$
C_{o}	RUBYCON, $150 \mu \mathrm{~F} * 2$ paralleled

Sequentially, the energy-storing components, such as $L_{1}, L_{m}, C_{1}, C_{2}$ and C_{o}, are taken into account, under the condition that the converter operates in CCM and the turns ratio of the coupling inductor, n, is set to one.

4.1 Design of $\boldsymbol{L}_{\mathbf{1}}$

Fig. 5(a) shows the waveforms related to L_{1}. In addition, (8) can be rewritten to be

$$
\begin{equation*}
V_{o} D^{2}+\left(V_{i}-2 V_{o}\right) D+V_{o}-(2+n) V_{i}=0 \tag{24}
\end{equation*}
$$

From (24), the duty cycle D can be obtained as

$$
\begin{equation*}
D=\frac{2 V_{o}-V_{i}-\sqrt{V_{i}^{2}+4 \times(1+n) V_{i} V_{o}}}{2 V_{o}} \tag{25}
\end{equation*}
$$

Therefore, according to (25), the minimum duty cycle $D_{\min }$ occurs at the maximum dc input voltage $V_{i, \max }$, and the maximum duty cycle $D_{\max }$ occurs at the minimum dc input voltage $V_{i, m i n}$.

Sequentially, based on Fig. 5(a), $\Delta i_{L 1}$ can be expressed to be

$$
\begin{equation*}
\Delta i_{L 1}=\frac{v_{L 1} \Delta t}{L_{1}}=\frac{V_{i} D T_{s}}{L_{1}} \tag{26}
\end{equation*}
$$

Therefore, the maximum value of $\Delta i_{L 1}$, signified by $\Delta i_{L 1, \text { max }}$, can be expressed to be

$$
\begin{equation*}
\Delta i_{L 1, \max }=\frac{V_{i, \max } D_{\min } T_{s}}{L_{1}} \tag{27}
\end{equation*}
$$

In order to make sure that L_{1} operates in CCM, the following inequality must be obeyed:

$$
\begin{equation*}
I_{L 1, \min } \geq \frac{\Delta i_{L 1, \max }}{2} \tag{28}
\end{equation*}
$$

where $I_{L 1, \text { min }}$ is the minimum dc current in L_{1}.

Also, if the efficiency of the overall system is assumed to be equal to 100%, then the following equation can be obtained to be

$$
\begin{equation*}
I_{L 1, \min }=I_{i, \min }=\frac{P_{o, \min }}{V_{i, \max }} \tag{29}
\end{equation*}
$$

Based on (27) to (29), the inequality for L_{1} can be obtained to be

$$
\begin{equation*}
L_{1} \geq \frac{V_{i, \max }^{2} D_{\min } T_{s}}{2 P_{o, \min }}=\frac{28^{2} \times 0.589 \times 20 \mu}{2 \times 40} \cong 115.4 \mu \mathrm{H} \tag{30}
\end{equation*}
$$

Therefore, the value of L_{1} is larger than $115.4 \mu \mathrm{H}$ so as to make sure that L_{1} operates in CCM. Furthermore, considering the efficiency performance, the higher the value of L_{1} is, the smaller the peak current in L_{1} and hence the lower the conduction loss and core loss. Eventually, the value of L_{1} is chosen to be $225 \mu \mathrm{H}$, which is about double the calculated value. Also, the core, named CC4220/ JPP44A, is selected to construct L_{1} along with the corresponding turns of 38 and the required air-gap of 1.622 mm .

(a)

(b)

Fig. 5. Waveforms related to: (a) L_{1}; (b) L_{m}.

4.2 Design of $\boldsymbol{L}_{\boldsymbol{m}}$

Fig. 5(b) shows the waveforms related to L_{m}. In addition, $\Delta i_{L m}$ can be expressed as

$$
\begin{equation*}
\Delta i_{L m}=\frac{v_{N 1} \Delta t}{L_{m}}=\frac{\left(V_{C 1}+V_{i}\right) D T_{s}}{L_{m}} \tag{31}
\end{equation*}
$$

According to (5) and (31) can be rewritten as

$$
\begin{equation*}
\Delta i_{L m}=\frac{D V_{i} T_{s}}{(1-D) L_{m}} \tag{32}
\end{equation*}
$$

Therefore, it can be seen that the maximum value of $\Delta i_{L m}$, signified by $\Delta i_{L m, \max }$, can be expressed to be

$$
\begin{equation*}
\Delta i_{L m, \max }=\frac{D_{\min } V_{i, \max } T_{s}}{\left(1-D_{\min }\right) L_{m}} \tag{33}
\end{equation*}
$$

In order to make sure that L_{m} operates in CCM, the following equation must be obeyed:

$$
\begin{equation*}
I_{L m, \min } \geq \frac{\Delta i_{L m, \max }}{2} \tag{34}
\end{equation*}
$$

where $I_{L m, \text { min }}$ is the minimum dc current in L_{m} and can be expressed to be

$$
\begin{equation*}
I_{L m, \min }=\frac{(1+n) P_{o, \min }}{\left(1-D_{\min }\right) V_{o}} \tag{35}
\end{equation*}
$$

Based on (33) to (35), the inequality for L_{m} can be obtained as

$$
\begin{align*}
L_{m} & \geq \frac{D_{\min } V_{i, \max } V_{o} T_{s}}{2 \times(1+n) P_{o, \min }} \\
& =\frac{0.589 \times 28 \times 400 \times 20 \mu}{2 \times(1+1) \times 40} \tag{36}\\
& \cong 824.6 \mu \mathrm{H}
\end{align*}
$$

Hence, the value of L_{m} is larger than $824.6 \mu \mathrm{H}$, so as to make sure that L_{m} operates in CCM. Furthermore, considering the limitation of winding area, the value of L_{m} is chosen to be $900 \mu \mathrm{H}$, which is about 1.1 times of the calculated value. Also, the core, named CC4220/JPP44A, is selected to construct L_{m} along with the corresponding N_{1} turns of 48 and the required air-gap of 0.628 mm . In addition, since n is set at one, the corresponding N_{2} turns are also 48.

4.3 Design of \boldsymbol{C}_{1}

From Fig. 6(a), the voltage ripple on C_{1}, called $\Delta v_{C 1}$, is
composed of the voltage ripple $\Delta v_{C 1_{-} E S R}$ created from the current flowing through the equivalent series resistor $E S R_{C 1}$, and the voltage ripple $\Delta v_{C 1_{-} \text {cap }}$ created from the charging and discharging of C_{1}. Therefore, $\Delta v_{C 1}$ can be expressed to be

$$
\begin{equation*}
\Delta v_{C 1}=\Delta v_{C 1_{-} E S R}+\Delta v_{C 1_{-} c a p} \tag{37}
\end{equation*}
$$

Also, $\Delta v_{C 1_{-} E S R}$ can be represented by

$$
\begin{equation*}
\Delta v_{C 1_{-} E S R}=\Delta i_{C 1} E S R_{C 1} \cong \frac{(1+n) E S R_{C 1} I_{o}}{D(1-D)^{2}} \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
E S R_{C 1}=\frac{\tan \delta_{C 1}}{2 \pi f_{s} C_{1}} \tag{39}
\end{equation*}
$$

where $\tan \delta_{C 1}$ is the dissipation factor of C_{1}.
In addition, $\Delta v_{C 1_{-} c a p}$ can be signified by
$\Delta v_{C 1 _c a p}=\frac{i_{C 1 _(1-D)} \Delta t}{C_{1}} \approx \frac{\left(I_{L 1}-\frac{I_{L m}}{1+n}\right)(1-D) T_{s}}{C_{1}}=\frac{(1+n) I_{o} T_{s}}{(1-D) C_{1}}$
where $i_{C 1 _(1-D)}$ is the current flowing through C_{1} during the turn-off period.

By assuming the value of $\Delta v_{C 1}$ is set at 1% of the rated dc output voltage V_{o}, substituting (8), (38), (39) and (40) into (37) yields the following rearranged equation:

$$
\begin{equation*}
C_{1}=\frac{\left[2 \pi D(1-D)+\tan \delta_{C 1}\right](1+n) I_{o} T_{s}}{0.02 \times \pi D^{2}(1-D) V_{i}} \tag{41}
\end{equation*}
$$

Based on (25) and (41), the minimum value of C_{1} occurs under the conditions of the rated dc output power and the minimum dc input voltage. In addition, under the given switching period T_{s}, the value of $\tan \delta_{C 1}$ is about 13.13 based on the datasheet of Rubycon ZLH series capacitors. Hence, the minimum value of C_{1} can be calculated to be $1563 \mu \mathrm{~F}$ as follows:

$$
\begin{align*}
C_{1} & \geq \frac{\left[2 \pi D_{\max }\left(1-D_{\max }\right)+\tan \delta\right](1+n) I_{o, \text { rated }} T_{s}}{0.02 \times \pi D_{\max }^{2}\left(1-D_{\max }\right) V_{i, \min }} \\
& =\frac{[2 \times 3.1415 \times 0.658 \times(1-0.658)+13.13] \times(1+1) \times 0.5 \times 20 \mu}{0.02 \times 3.1415 \times 0.658^{2} \times(1-0.658) \times 20} \\
& \cong 1563 \mu \mathrm{~F} \tag{42}
\end{align*}
$$

Finally, one $2200 \mu \mathrm{~F}$ Rubycon capacitor is chosen for C_{1}.

4.4 Design of $\mathrm{C}_{\mathbf{2}}$

From Fig. 6(b), the voltage ripple on C_{2}, called $\Delta v_{C 2}$, is composed of the voltage ripple $\Delta v_{C 2_{-} E S R}$ created from the current flowing through the equivalent series resistor

Fig. 6. Waveforms pertaining to: (a) C_{1}; (b) C_{2}; (c) C_{o}.
$E S R_{C 2}$, and the voltage ripple $\Delta v_{C 2}$ cap created from the charging and discharging of C_{2}. Therefore, $\Delta v_{C 2}$ can be expressed to be

$$
\begin{equation*}
\Delta v_{C 2}=\Delta v_{C 2_{-} E S R}+\Delta v_{C 2_{-} c a p} \tag{43}
\end{equation*}
$$

Also, $\Delta v_{C 2_{-} E S R}$ can be represented by

$$
\begin{equation*}
\Delta v_{C 2_{-} E S R}=\Delta i_{C 2} E S R_{C 2} \cong \frac{E S R_{C 2} I_{o}}{D(1-D)} \tag{44}
\end{equation*}
$$

where

$$
\begin{equation*}
E S R_{C 2}=\frac{\tan \delta_{C 2}}{2 \pi f_{s} C_{2}} \tag{45}
\end{equation*}
$$

where $\tan \delta_{C 2}$ is the dissipation factor of C_{2}.
Moreover, $\Delta v_{C 2_{-} c a p}$ can be signified by

$$
\begin{equation*}
\Delta v_{C 2_{-} c a p}=\frac{i_{C 2_{_}(1-D)} \Delta t}{C_{2}} \approx \frac{V_{o} T_{s}}{R_{o} C_{2}}=\frac{I_{o} T_{s}}{C_{2}} \tag{46}
\end{equation*}
$$

where $i_{C 2 _(1-D)}$ is the current flowing through C_{2} during the turn-off period.

By assuming that the value of $\Delta v_{C 2}$ is set at 0.5% of the rated dc output voltage V_{o}, substituting (8), (44), (45) and (46) into (43) yields the following rearranged equation:

$$
\begin{equation*}
C_{2}=\frac{\left[2 \pi D(1-D)+\tan \delta_{C 2}\right] I_{o} T_{s}}{0.01 \times \pi D(1+n) V_{i}} \tag{47}
\end{equation*}
$$

Based on (25) and (47), the minimum value of C_{2} occurs under the conditions of the rated dc output power and the minimum dc input voltage. In addition, under the given switching period T_{s}, the value of $\tan \delta_{C 2}$ is about 6.22 based on the datasheet of Nichicon CS series capacitors. Hence, the minimum value of C_{2} can be worked out to be $92.3 \mu \mathrm{~F}$ as follows:

$$
\begin{align*}
C_{2} & \geq \frac{\left[2 \pi D_{\max }\left(1-D_{\max }\right)+\tan \delta_{C 2} I_{o, \text { rated }} T_{s}\right.}{0.01 \times \pi D_{\max }(1+n) V_{i, \text { min }}} \\
& =\frac{[2 \times 3.1415 \times 0.658 \times(1-0.658)+6.22] \times 0.5 \times 20 \mu}{0.01 \times 3.1415 \times 0.658 \times(1+1) \times 20} \\
& \cong 92.3 \mu \mathrm{~F} \tag{48}
\end{align*}
$$

Eventually, one $220 \mu \mathrm{~F}$ Nichicon capacitor is selected for C_{2}.

4.5 Design of $\mathrm{C}_{\mathbf{0}}$

From Fig. 6(c), the voltage ripple on C_{o}, called Δv_{o}, is composed of the voltage ripple $\Delta v_{C o_{-} E S R}$ created from the current flowing through the equivalent series resistor $E S R_{C o}$, and the voltage ripple $\Delta v_{C o-c a p}$ created from the charging and discharging of C_{o}. Therefore, Δv_{o} can be expressed to be

$$
\begin{equation*}
\Delta v_{o}=\Delta v_{C o-E S R}+\Delta v_{C o _c a p} \tag{49}
\end{equation*}
$$

Also, $\Delta v_{C 2_{-} E S R}$ can be represented by

$$
\begin{equation*}
\Delta v_{C o-E S R}=\Delta i_{C o} E S R_{C o} \cong \frac{E S R_{C o} I_{o}}{1-D} \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
E S R_{C o}=\frac{\tan \delta_{C o}}{2 \pi f_{s} C_{o}} \tag{51}
\end{equation*}
$$

where $\tan \delta_{C o}$ is the dissipation factor of C_{o}.
Besides, $\Delta v_{C o _c a p}$ can be signified by

$$
\begin{equation*}
\Delta v_{C o_{-} c a p}=\frac{i_{C o _(D)} \Delta t}{C_{o}} \approx \frac{V_{o} D T_{s}}{R_{o} C_{o}}=\frac{I_{o} D T_{s}}{C_{o}} \tag{52}
\end{equation*}
$$

where $i_{C o _(D)}$ is the current flowing through C_{o} during the turn-on period.

By assuming that the value of Δv_{o} is set at 0.1% of the rated output voltage V_{o}, substituting (8), (50), (51) and (52) into (49) yields the following rearranged equation:

$$
\begin{equation*}
C_{o}=\frac{\left[2 \pi D(1-D)+\tan \delta_{C_{o}}\right] I_{o} T_{s}}{0.002 \times \pi(1-D) V_{o}} \tag{53}
\end{equation*}
$$

Based on (25) and (53), the minimum value of C_{o} occurs under the conditions of the rated dc power and the minimum dc input voltage. In addition, under the given switching period T_{s}, the value of $\tan \delta_{C o}$ is about 14.14 based on the datasheet of Rubycon CXW series capacitors. Hence, the minimum value of C_{o} can be figured out to be $180.9 \mu \mathrm{~F}$ as follows:

$$
\begin{align*}
C_{o} & \geq \frac{\left[2 \pi D_{\max }\left(1-D_{\max }\right)+\tan \delta_{C_{o}}\right] I_{o, \text { rated }} T_{s}}{0.002 \times \pi\left(1-D_{\max }\right) V_{o}} \\
& =\frac{[2 \times 3.1415 \times 0.658 \times(1-0.658)+14.137] \times 0.5 \times 20 \mu}{0.002 \times 3.1415 \times(1-0.658) \times 400} \\
& \cong 180.9 \mu \mathrm{~F} \tag{54}
\end{align*}
$$

At last, two $150 \mu \mathrm{~F}$ Rubycon capacitors, one $0.33 \mu \mathrm{~F}$ plastic capacitor and one 22 nF plastic capacitor are chosen for C_{o} and paralleled together.

4.6 Switch utilization

Like the traditional boost converter, the higher the voltage conversion ratio is, the lower the switch utilization $S U$ [2], which is defined to be

$$
\begin{equation*}
S U=\frac{P_{o}}{V_{d s, \max } \cdot I_{d s, \max }} \tag{55}
\end{equation*}
$$

where

$$
\begin{gather*}
P_{o}=200 \mathrm{~W} \tag{56}\\
V_{D S 1, p e a k}=V_{o}=400 \mathrm{~V} \tag{57}
\end{gather*}
$$

$$
\begin{align*}
I_{D S 1, \text { peak }}= & \frac{1+n}{D_{\max }\left(1-D_{\max }\right)} I_{o}+\frac{V_{i, \min } D_{\max } T_{s}}{2 \times\left(1-D_{\max }\right) L_{m}} \\
& +\frac{P_{o}}{V_{i, \min }}+\frac{V_{i, \min } D_{\max } T_{s}}{2 L_{1}} \\
= & \frac{1+1}{0.658 \times(1-0.658)} \times 0.5+\frac{20 \times 0.658 \times 20 \mu}{2 \times(1-0.658) \times 900 \mu} \\
& +\frac{200}{20}+\frac{20 \times 0.658 \times 20 \mu}{2 \times 225 \mu} \tag{58}\\
\cong & 15.5 \mathrm{~A}
\end{align*}
$$

Therefore, based on (55), the switch utilization of the proposed converter is about 0.032 . This value is quite low due to the corresponding voltage conversion ratio is ultra high, about 20.

5. Experimental Results

On the one hand, Fig. 7 shows the waveforms relevant to the input voltage of 24 V at rated load. Fig. 7 depicts the gate driving signal for $S_{1}, v_{g s 1}$, and the current in $L_{1}, i_{L 1}$; Fig. 8 shows the gate driving signal for $S_{1}, v_{g s 1}$, the current i_{3} with the sum of the current in N_{1}, i_{1}, and the current in L_{m}, $i_{L m}$, and the current in N_{2}, i_{2}; Fig. 9 depicts the gate driving signal for $S_{1}, v_{g s 1}$, the current in $D_{4}, i_{D 4}$, and the current in $S_{1}, i_{D S 1}$; Fig. 10 shows the gate driving signal for $S_{1}, v_{g s 1}$, and the voltages on C_{1} and $C_{2}, v_{C 1}$ and $v_{C 2}$; Fig. 11 depicts the gate driving signal for $S_{1}, v_{g s 1}$, and the output voltage ripple Δv_{o}; Fig. 12 shows the gate driving signal for S_{1}, $v_{g s 1}$, and the voltage on $S_{1}, v_{D S 1}$. From these figures, it can be seen that the proposed converter can operate well to some extent and the output voltage ripple is about 360 mV , i.e., 0.09% of V_{o}, smaller than 0.1% of V_{o}. Furthermore, it can be seen that from Fig. 12, the voltage across S_{1} has no voltage spike.

The following is used to further explain the current

Fig. 7. Measured waveforms under the input voltage of 24 V at rated load: (1) $v_{g s 1}$; (2) $i_{L 1}$.

Fig. 8. Measured waveforms under the input voltage of 24 V at rated load: (1) $v_{g s}$; (2) i_{3}; (3) i_{2}.

Fig. 9. Measured waveforms under the input voltage of 24 V at rated load: (1) $v_{g s 1}$; (2) $i_{D 4}$; (3) $i_{D S 1}$.

Fig. 10. Measured waveforms under the input voltage of 24 V at rated load: (1) $v_{g s}$; (2) $v_{C 1}$; (3) $v_{C 2}$.
spikes on i_{2} and i_{3} shown in Fig. 8. Since the proposed converter operates in CCM, the reverse recovery currents created from the diodes are indispensible. Aside from this, in order to reduce the primary and secondary leakage

Fig. 11. Measured waveforms under the input voltage of 24 V at rated load: (1) $v_{g s 1} ;(2)^{\Delta v_{o}}$.

Fig. 12. Measured waveforms under the input voltage of 24 V at rated load: (1) $v_{g s 1}$; (2) $v_{D S 1}$.

Fig. 13. Load transient response due to step load change from 50% to 100% load under the rated input voltage.
inductances, the bifilar winding technique is adopted, thereby causing the equivalent parasitic capacitance in the transformer to be increased. Furthermore, since the
proposed converter is an ultra high step-up converter, the voltage across the transformer is relatively large during the turn-off period, implying that the energy stored in the equivalent parasitic capacitance in the transformer is relatively large. Therefore, based on the mentioned above, high current spikes occur as soon as the switch is turned on. This phenomenon can be seen in the traditional boost converter operating in CCM with a high output voltage. As generally acknowledged, these current spikes will create EMI noises. However, the EMI problem should be taken into account from many aspects, such as EMI choke design, shielding design, layout, etc. Consequently, in this paper, it
is very hard to discuss the effects of these current spikes on the EMI problem.

Besides, Figs. 13 and 14 are used to show load transient responses due to step load change from 50% to 100% load and 100% and 50%, respectively. From these figures, it can be seen that the values of two recovery times are both about 1.2 V , and the values of the undershoot and overshoot are both within 16 ms . And, Fig. 15 shows a photo of the experimental setup.

Finally, Table 3 makes a comparison between the proposed converter and the converters shown in the References, in terms of voltage conversion ratio, com-

Table 3. Comparison between the proposed converter and the converters shown in the References, in terms of voltage conversion ratio, component number, switch voltage stress, output inductor and floating output

Ref.	Voltage conversion ratio	Component number	Switch voltage stress	Output inductor	Floating output
[3]	$\frac{1}{(1-D)^{2}}$	8	$V_{d s 1}=\frac{V_{i}}{1-D}, \quad V_{d s 2}=V_{d s 3}=\frac{V_{i}}{(1-D)^{2}}$	No	No
[4]	$\frac{1+n}{1-D}$	10	$V_{d s 1}=n V_{i}, \quad V_{d s 2}=\frac{n D}{1-D} V_{i}$	No	No
[5]	$\frac{2+n}{1-D}$	10	$V_{d s 1}=\frac{V_{i}}{1-D}$	No	No
[6]	$\frac{1+n}{1-D}$	15	$V_{d s 1}=\frac{V_{i}}{1-D}$	No	No
[7]	$\frac{2}{1-D}+n D$	13	$V_{s 1}=V_{s 2}=\frac{V_{o}}{2}-\frac{n D V_{i}}{2}$	No	No
[8]	$\frac{1+D+n D}{1-D}$	9	$V_{d s 1}=\frac{V_{i}}{1-D}$	No	Yes
[9]	$\frac{2(1+n D)}{1-D}$	10	$V_{d s 1}=\frac{1+n D}{1-D} V_{i}$	No	Yes
[10]	$\frac{2+n D}{1-D}$	14	$V_{d s 1}=\frac{V_{i}}{1-D}$	No	No
[11]	$1+D$	6	$V_{d s 1}=2 V_{i}, V_{d s 2}=V_{i}$	Yes	No
[12]	$\frac{2-D}{1-D}$	8	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	Yes	No
[13]	$\frac{2-D}{1-D}$	8	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	Yes	No
[14]	$\frac{2}{1-D}+n$	8	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	No	No
[15]	Type 1: $\frac{3-D}{1-D}$ Type 2: $\frac{2}{1-D}$ Type 3: $\frac{3-2 D}{1-D}$	10	Type 1: $\quad V_{d s 1}=V_{d s 2}=V_{i}, \quad V_{d s 3}=\frac{1+D}{1-D} V_{i}$ Type 2: $\quad V_{d s 1}=V_{d s 2}=V_{i}, \quad V_{d s 3}=\frac{1+D}{1-D} V_{i}$ Type 3: $\quad V_{d s 1}=V_{d s 2}=V_{i}, \quad V_{d s 3}=\frac{2-D}{1-D} V_{i}$	No	No
[16]	$\frac{2 n D}{1-D}+1$	11	$V_{d s 1}=V_{i}, \quad V_{d s 2}=V_{i}, \quad V_{d s 3}=\left(\frac{3 D-1}{1-D}\right) V_{i}$	No	No
[17]	Type 1: 2D Type 2: 2D	8	Type 1: $V_{d s 1}=V_{i}, V_{d s 2}=V_{i}, V_{d s 3}=V_{i}, V_{d s 4}=V_{i}$ Type 2: $V_{d s 1}=V_{i}, \quad V_{d s 2}=V_{i}, \quad V_{d s 3}=V_{i}, \quad V_{d s 4}=V_{i}$	Yes	No
[18]	$\frac{n+1}{1-D}$	10	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	No	No
[19]	$\frac{2 n+1}{1-D}$	11	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	No	No
Proposed	$\frac{2+n-D}{(1-D)^{2}}$	10	$V_{d s 1}=\left[\frac{2+n-D}{(1-D)^{2}}\right] V_{i}$	No	No

Fig. 14. Load transient response due to step load change from 100% to 50% load under the rated input voltage.

Fig. 15. Photo of the experimental setup.
ponent number, switch voltage stress, output inductor and floating output. From Table 3, it can be seen that the denominator of the voltage conversion ratio of the proposed converter is the square of one minus duty cycle, and hence, under a given duty cycle and turns ratio, the proposed converter has a higher voltage conversion ratio than all the other references do, but the corresponding voltage stress is higher than all the other voltage stresses. Also, the number of the components is 10 , which is acceptable as compared to those used in the References.

6. Conclusion

A high step-up converter is presented herein, which combines the traditional buck-boost converter, the charge pump capacitor and the coupling inductor, so as to make the circuit design relatively elastic. Above all, the leakage inductance energy can be recycled to the output, and hence no voltage spike on the switch occurs. In addition, the used power switch is not floating, so as to make the gate driving circuit quite simple. Based on the mentioned above, this converter is very suitable for the green energy applications.

References

[1] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, $2^{\text {nd }}$ ed., Norwell: KLuwer Academic Publishers, 2001.
[2] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics, $2^{\text {nd }}$ ed. New York: Wiley, 2003.
[3] B. R. Lin, F. Y. Hsieh and J. J. Chen, "Analysis and implementation of a bidirectional converter with high converter ratio," IEEE ICIT'08, pp.1-6, 2008.
[4] K.B. Park, G.W. Moon and M.J. Youn, "Nonisolated high step-up stacked converter based on boostintegrated isolated converter," IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 577-587, 2011.
[5] Y. Deng, Q. Rong, Y. Zhao, J. Shi and X. He, "Single switch high step-up converters with built-in transformer voltage multiplier cell," IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3557-3567, 2012.
[6] Wuhua Li, Weichen Li, Xiangning He, D. Xu and Bin Wu, "General derivation law of nonisolated high-step-up interleaved converters with built-in transformer," IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1650-1661, 2012.
[7] C. M. Lai, C. T. Pan and M. C. Cheng, "Highefficiency modular high step-up interleaved boost converter for dc-microgrid applications," IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 161-171, 2012.
[8] R. J. Wai and R. Y. Duan, "High-efficiency power conversion for low power fuel cell generation system," IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 847-856, 2005.
[9] L. S. Yang, T. J. Liang, H. C. Lee, and J. F. Chen, "Novel high step-up DC-DC converter with coupledinductor and voltage-doubler circuits," IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4196-4206, 2011.
[10] C. T. Pan and C. M. Lai, "A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications," IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 1998-2006, 2010.
[11] K. I. Hwu and Y. T. Yau, "KY converter and its derivatives," IEEE Transactions on Power Electronics, vol. 57, no. 6, pp. 128-137, 2009.
[12] K. I. Hwu and Y. T. Yau, "A KY boost converter," IEEE Transactions on Power Electronics, vol. 25, no. 11, pp. 2699-2703, 2010.
[13] K. I. Hwu, K. W. Huang and W. C. Tu, "Step-up converter combining KY and buck-boost converters," IET Electronics Letters, vol. 47, no. 12, pp. 722-724, 2011.
[14] K. I. Hwu and Y. T. Yau, "Inductor-coupled KY boost converter," IET Electronics Letters, vol. 46, no. 24, pp. 1624-1626, 2010.
[15] K. I. Hwu and W. C. Tu, "Voltage-boosting converters with energy pumping," IET Power Electronics, vol. 5, no. 2, pp. 185-195, 2012.
[16] K. I. Hwu, Y. T. Yau and Y. H. Chen, "A novel voltage-boosting converter with passive voltage clamping," IEEE ICSET'08, pp. 351-354, 2008.
[17] K. I. Hwu and Y. T. Yau, "Two types of KY buckboost converters," IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 2970-2980, 2009.
[18] Wuhua Li, Weichen Li, Yan Deng and Xiangning He, "Single-stage single-phase high-step-up ZVT boost converter for fuel-cell microgrid system," IEEE Transactions on Power Electronics, vol. 25, no.12, pp. 3057-3065, 2010.
[19] Wuhua Li, Yi Zhao, Yan Deng and Xiangning He, "Interleaved converter with voltage multiplier cell for high step-up and high efficiency conversion," IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2397-2408, 2010.

K. I. Hwu He was born in Taichung, Taiwan, on August 24, 1965. He received the B.S. and Ph.D. degrees in electrical engineering from National Tsing Hua University, Hsinchu, Taiwan, in 1995 and 2001, respectively. From 2001 to 2002, he was the Team Leader of the Voltage-Regulated Module (VRM) at AcBel Company. From 2002 to 2004, he was a Researcher at the Energy and Resources Laboratories, Industrial Technology Research Institute. He is currently a Professor at the Institute of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan, where he was the Chairman of the Center for Power Electronics Technology from 2005 to 2006. His current research interests include power electronics, converter topology, and digital control.

T. J. Peng He received the M.S degree in electrical engineering from National Taipei University of Technology, Taipei, Taiwan. His research interest is power electronics.

[^0]: \dagger Corresponding Author: Dept. of Electrical Engineering, National Taipei University of Technology, Taiwan. (eaglehwu@ntut.edu.tw)

 * Dept. of Electrical Engineering, National Taipei University of Technology, Taiwan. (Hunter_Peng@chiconypower.com.tw) Received: October 7, 2014; Accepted: February 16, 2015

