• Title/Summary/Keyword: Gate Insulator

Search Result 380, Processing Time 0.025 seconds

Effects of Various Deposition Rates of Al2O3 Gate Insulator on the Properties of Organic Thin Film Transistor (알루미늄 옥사이드 절연층의 증착율이 유기박막 트랜지스터의 특성에 미치는 영향)

  • Choi, Kyung-Min;Hyung, Gun-Woo;Kim, Young-Kwan;Choi, Eou-Sik;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1063-1066
    • /
    • 2009
  • In this study, we fabricated pentacene organic thin film trasistors(OTFTs) which used aluminum oxide as the gate insulator. Aluminum oxide for OTFTs was deposited on glass substrate with a different deposition rate by E-beam evaporation. In case of the deposition rate of $0.1\;{\AA}$, the fabricated aluminum oxide gate insulating OTFT showed a threshold voltage of -1.36 V, an on/off current ratio of $1.9{\times}10^3$ and field effect mobility $0.023\;cm^2/V_s$.

Characteristics of Organic Thin Film Transistors with UVtreated Surface of Synthesized Gate Insulator

  • Bong, Kang-Wook;Park, Jae-Hoon;Kang, Jong-Mook;Kim, Hye-Min;Lee, Hyun-Jung;Yi, Mi-Hye;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1295-1297
    • /
    • 2007
  • In this study, we report that the characteristics of OTFTs can be improved by the UV exposure of the surface of the synthesized photo-reactive gate insulator, and be optimized by controlling the exposure time. As a gate dielectric, the modified PVP was prepared by substituting hydroxyl group in PVP with cinnamoyl group. The synthesis details and the effects of the modified PVP on the device performance are discussed.

  • PDF

Air stable n-type organic field effect transistors using a perfluoropolymer insulator

  • Jang, Jun-Hyuk;Kim, Ji-Whan;Park, Noh-Hwal;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.276-279
    • /
    • 2008
  • Air stable n-type organic field effect transistors (OFETs) based on CB60B are realized using a perfluoropolymer as the gate dielectric layer. The devices showed the field-effect mobility of $0.05\;cm^2P/V\;s$ in ambient air. Replacing the gate dielectric material by $SiO_2$ resulted in no transistor action in ambient air. Perfluorinated gate dielectric layer reduces interface traps significantly for the n-type semiconductor even in ambient air.

  • PDF

The thickness effect on surface and electrical properties of PVP layer as insulator layer of OTFTs (OTFT 소자의 절연층으로써 두께에 따른 PVP 층의 표면 및 전기적 특성)

  • Seo, Choong-Seok;Park, Yong-Seob;Park, Jae-Wook;Kim, Hyung-Jin;Yun, Deok-Yong;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.245-245
    • /
    • 2008
  • In this work, we describe the characterization of PVP films synthesized by spin-coater method and fabricate OTFTs of a bottom gate structure using pentacene as the active layer and polyvinylphenol (PVP) as the gate dielectric on Au gate electrode. We investigated the surface and electrical properties of PVP layer using an AFM method and MIM structure, and estimated the device properties of OTFTs including $I_D-V_D$, $I_D-V_G$, threshold voltage $V_T$, on/off ratio, and field effect mobility.

  • PDF

A Design Evaluation of Strained Si-SiGe on Insulator (SSOI) Based Sub-50 nm nMOSFETs

  • Nawaz, Muhammad;Ostling, Mikael
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.136-147
    • /
    • 2005
  • A theoretical design evaluation based on a hydrodynamic transport simulation of strained Si-SiGe on insulator (SSOI) type nMOSFETs is reported. Although, the net performance improvement is quite limited by the short channel effects, simulation results clearly show that the strained Si-SiGe type nMOSFETs are well-suited for gate lengths down to 20 nm. Simulation results show that the improvement in the transconductance with decreasing gate length is limited by the long-range Coulomb scattering. An influence of lateral and vertical diffusion of shallow dopants in the source/drain extension regions on the device performance (i.e., threshold voltage shift, subthreshold slope, current drivability and transconductance) is quantitatively assessed. An optimum layer thickness ($t_{si}$ of 5 and $t_{sg}$ of 10 nm) with shallow Junction depth (5-10 nm) and controlled lateral diffusion with steep doping gradient is needed to realize the sub-50 nm gate strained Si-SiGe type nMOSFETs.

Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors

  • Shin, Jae-Heon;Lee, Ji-Su;Hwang, Chi-Sun;KoPark, Sang-Hee;Cheong, Woo-Seok;Ryu, Min-Ki;Byun, Chun-Won;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.62-64
    • /
    • 2009
  • We report on the bias stability characteristics of transparent ZnO thin film transistors (TFTs) under visible light illumination. The transfer curve shows virtually no change under positive gate bias stress with light illumination, while it shows dramatic negative shifts under negative gate bias stress. The major mechanism of the bias stability under visible illumination of our ZnO TFTs is thought to be the charge trapping of photo-generated holes at the gate insulator and/or insulator/channel interface.

Fabrication and Characterizations of Stretchable Thin-Film Transistor using Parylene Gate Insulating Layer (파릴렌 게이트 절연층을 사용한 신축성 박박 트랜지스터의 제작 및 특성)

  • Jung, Soon-Won;Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.721-726
    • /
    • 2017
  • We fabricated stretchable thin-film transistors(TFTs) on a polydimethylsiloxane substrate with patterned polyimide island structures by using an amorphous InGaZnO semiconductor and parylene gate insulator. The TFTs exhibited a field- effect mobility of $5cm^2V^{-1}s^{-1}$ and a current on/off ratio of $10^5$ at a relatively low operating voltage. Furthermore, the fabricated transistors showed no noticeable changes in their electrical performance for large strains of up to 50 %.

Organic transistor comprising a polymer gate insulator

  • Kang, Gi-Wook;Kang, Hee-Young;Ahn, Young-Joo;Lee, Nam-Heon;Lee, Mun-Jae;Lim, Jong-Tae;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.777-779
    • /
    • 2002
  • We report the performance of pentacene-based organic thin film transistors (OTFT) with PMMA (polymethyl methacrylate) as the gate insulator which was spin-coated on the ITO (indium tin oxide) glass substrate which was used as the gate contact. The pentacene thin film was deposited on the PMMA film and then Au source/drain contacts were deposited through shadow mask. The pentacene film shows better molecular ordering on PMMA compared with $SiO_2$ of Si wafer. The devices exhibited the field effect mobility of ${\sim}0.004cm^2$/Vs and on/off current ratio of ${\sim}10^3$.

  • PDF

Low-voltage Organic Thin-film Transistors with Polymeric High-k Gate Insulator on a Flexible Substrates (고유전율 절연체를 활용한 저 전압 유연 유기물 박막 트랜지스터)

  • Kim, Jae-Hyun;Bae, Jin-Hyuk;Lee, In-ho;Kim, Min-Hoi
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.165-168
    • /
    • 2015
  • We demonstrated low-voltage organic thin-film transistors (OTFTs) with bilayer insulators, high-k polymer and low temperature crosslinkable polymer, on a flexible plastic substrate. Poly (vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) and poly (2-vinylnaphthalene) are used for high-k polymer gate insulator and low temperature crosslinkable polymer insulators, respectively. The mobility of flexible OTFTs is $0.17cm^2/Vs$ at gate voltages -5 V after bending operation.

Electrical Effects in Organic Thin-Film Transistors Using Polymerized Gate Insulators by Vapor Deposition Polymerization (VDP)

  • Lee, Dong-Hyun;Pyo, Sang-Woo;Koo, Ja-Ryong;Kim, Jun-Ho;Shim, Jae-Hoon;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.661-664
    • /
    • 2004
  • In this paper, it was demonstrated that the organic thin film transistors with the organic gate insulators were fabricated by vapor deposition polymerization (VDP) processing. The configuration of OTFTs was a staggered-inverted top-contact structure and gate dielectric layer was deposited with 0.45 ${\mu}m$ thickness. In order to form polyimide as a gate insulator, VDP process was also introduced instead of spin-coating process. Polyimide film was respectively co-deposited with different materials. One was from a 4,4'-oxydiphthalic anhydride (ODPA) and 4, 4'-oxydianiline (ODA) and the other was from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and ODA. And it was also cured at 150 $^{\circ}C$ for 1 hour followed by 200 $^{\circ}C$ for 1 hour. Electrical characteristics of the organic thin-film transistors were detailed comparisons between the ODPA-ODA and the 6FDA-ODA which were used as gate insulator.

  • PDF