DOI QR코드

DOI QR Code

Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors

  • Shin, Jae-Heon (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Ji-Su (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Hwang, Chi-Sun (Convergence Components & Materials Research Laboratory, ETRI) ;
  • KoPark, Sang-Hee (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Cheong, Woo-Seok (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Ryu, Min-Ki (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Byun, Chun-Won (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Jeong-Ik (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Chu, Hye-Yong (Convergence Components & Materials Research Laboratory, ETRI)
  • Received : 2008.08.28
  • Accepted : 2008.12.11
  • Published : 2009.02.28

Abstract

We report on the bias stability characteristics of transparent ZnO thin film transistors (TFTs) under visible light illumination. The transfer curve shows virtually no change under positive gate bias stress with light illumination, while it shows dramatic negative shifts under negative gate bias stress. The major mechanism of the bias stability under visible illumination of our ZnO TFTs is thought to be the charge trapping of photo-generated holes at the gate insulator and/or insulator/channel interface.

Keywords

References

  1. J.F. Wager, "Transparent Electronics," Science, vol. 300, no. 5623, 2003, pp. 1245-1246. https://doi.org/10.1126/science.1085276
  2. K. Nomura et al., "Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors," Nature, vol. 432, no. 7016, 2004, pp. 488-492. https://doi.org/10.1038/nature03090
  3. S.-H. Ko et al. "Characteristics of ZnO Thin Films by Means of Plasma-Enhanced Atomic Layer Deposition," Electrochemical and Solid-State Letters, vol. 9, no. 10, 2006, pp. G299-301. https://doi.org/10.1149/1.2221770
  4. H.-N. Lee et al., "3.5 Inch QCIF+ AM-OLED Panel Based on Oxide TFT Backplane," Tech. Dig. SID, California, USA, 2007, pp. 1826-1829.
  5. R.B.M Cross and M.M. De Souza, "Investigating the Stability of Zinc Oxide Thin Film Transistors," Appl. Phys. Lett., vol. 89, no. 26, 2006, pp. 263513.1-3.
  6. A. Suresh and J.F. Muth, "Bias Stress Stability of Indium Gallium Zinc Oxide Channel Based Transparent Thin Film Transistors‚" Appl. Phys. Lett., vol. 92, no. 3, 2008, pp. 033502.1-3.
  7. P. Gorrn et al., he Influence of Visible Light on Transparent Zinc Tin Oxide Thin Film Transistors," Appl. Phys. Lett., vol. 91, no. 19, 2007, pp. 193504.1-3.
  8. M.J. Powell, "The Physics of Amorphous-Silicon Thin-Film Transistors," IEEE Trans. on Electron Devices, vol. 36, no. 12, 1989, pp. 2753-2763. https://doi.org/10.1109/16.40933
  9. M. Debucquoy et al., "Correlation between Bias Stress Instability and Photo-transistor Operation of Pentacene Thin-Film Transistors," Appl. Phys. Lett., vol. 91, no. 10, 2007, pp. 103508.1-3.
  10. M. Shur and M. Hack, "Physics of Amorphous Silicon Based Alloy Field-Effect Transistors," J. Appl. Phys., vol. 55, no. 10, 1984, pp. 3831-3842. https://doi.org/10.1063/1.332893

Cited by

  1. 21.2: Al and Sn-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Back-Plane vol.40, pp.1, 2009, https://doi.org/10.1889/1.3256763
  2. Improved Performance of White Phosphorescent Organic Light-Emitting Diodes through a Mixed-Host Structure vol.31, pp.6, 2009, https://doi.org/10.4218/etrij.09.1209.0005
  3. Optical and Electrical Properties of $Ti_xSi_{1-x}O_y$ Films vol.31, pp.6, 2009, https://doi.org/10.4218/etrij.09.1209.0033
  4. Channel Protection Layer Effect on the Performance of Oxide TFTs vol.31, pp.6, 2009, https://doi.org/10.4218/etrij.09.1209.0043
  5. Effects of Interfacial Dielectric Layers on the Electrical Performance of Top-Gate In-Ga-Zn-Oxide Thin-Film Transistors vol.31, pp.6, 2009, https://doi.org/10.4218/etrij.09.1209.0049
  6. A Protective Layer on the Active Layer of Al-Zn-Sn-O Thin-Film Transistors for Transparent AMOLEDs vol.10, pp.4, 2009, https://doi.org/10.1080/15980316.2009.9652097
  7. High-Performance Al–Sn–Zn–In–O Thin-Film Transistors: Impact of Passivation Layer on Device Stability vol.31, pp.2, 2009, https://doi.org/10.1109/led.2009.2036944
  8. Influence of Illumination on the Negative-Bias Stability of Transparent Hafnium–Indium–Zinc Oxide Thin-Film Transistors vol.31, pp.5, 2009, https://doi.org/10.1109/led.2010.2043050
  9. Instabilities in Amorphous Oxide Semiconductor Thin-Film Transistors vol.10, pp.4, 2009, https://doi.org/10.1109/tdmr.2010.2069561
  10. High-Performance Transparent Conducting Ga-Doped ZnO Films Deposited by RF Magnetron Sputter Deposition vol.49, pp.4, 2010, https://doi.org/10.1143/jjap.49.04dp09
  11. The Impact of Device Configuration on the Photon-Enhanced Negative Bias Thermal Instability of GaInZnO Thin Film Transistors vol.13, pp.6, 2010, https://doi.org/10.1149/1.3381023
  12. Electrical Characterization of Metal-Insulator-Semiconductor Capacitors Having Double-Layered Atomic-Layer-Deposited Al[sub 2]O[sub 3] and ZnO for Transparent Thin Film Transistor Applications vol.157, pp.7, 2010, https://doi.org/10.1149/1.3421680
  13. Effect of Double-Layered Al[sub 2]O[sub 3] Gate Insulator on the Bias Stability of ZnO Thin Film Transistors vol.13, pp.8, 2009, https://doi.org/10.1149/1.3428745
  14. Device reliability under electrical stress and photo response of oxide TFTs vol.18, pp.10, 2009, https://doi.org/10.1889/jsid18.10.779
  15. Interface and bulk effects for bias-light-illumination instability in amorphous-In-Ga-Zn-O thin-film transistors vol.18, pp.10, 2009, https://doi.org/10.1889/jsid18.10.789
  16. New Depletion-Mode IGZO TFT Shift Register vol.32, pp.2, 2011, https://doi.org/10.1109/led.2010.2090939
  17. A Novel Level Shifter Employing IGZO TFT vol.32, pp.2, 2011, https://doi.org/10.1109/led.2010.2093505
  18. The Effect of Dynamic Bias Stress on the Photon-Enhanced Threshold Voltage Instability of Amorphous HfInZnO Thin-Film Transistors vol.32, pp.2, 2009, https://doi.org/10.1109/led.2010.2093867
  19. Light Effect on Negative Bias-Induced Instability of HfInZnO Amorphous Oxide Thin-Film Transistor vol.58, pp.4, 2011, https://doi.org/10.1109/ted.2011.2109388
  20. The Effects of Mechanical Bending and Illumination on the Performance of Flexible IGZO TFTs vol.58, pp.7, 2011, https://doi.org/10.1109/ted.2011.2143416
  21. Investigation of Light-Induced Bias Instability in Hf-In-Zn-O Thin Film Transistors: A Cation Combinatorial Approach vol.158, pp.4, 2009, https://doi.org/10.1149/1.3552700
  22. Direct Observation of Hole Current in Amorphous Oxide Semiconductors under Illumination vol.14, pp.6, 2009, https://doi.org/10.1149/1.3567027
  23. Electronic Structure of O-vacancy in High-kDielectrics and Oxide Semiconductors vol.1370, pp.None, 2009, https://doi.org/10.1557/opl.2011.771
  24. Light Response of Top Gate InGaZnO Thin Film Transistor vol.50, pp.3, 2011, https://doi.org/10.7567/jjap.50.03cb08
  25. Role of ZrO2 incorporation in the suppression of negative bias illumination-induced instability in Zn-Sn-O thin film transistors vol.98, pp.12, 2011, https://doi.org/10.1063/1.3571448
  26. Gate bias stress stability under light irradiation for indium zinc oxide thin-film transistors based on anodic aluminium oxide gate dielectrics vol.44, pp.45, 2009, https://doi.org/10.1088/0022-3727/44/45/455102
  27. Investigating the Drain-Bias-Induced Degradation Behavior Under Light Illumination for InGaZnO Thin-Film Transistors vol.33, pp.7, 2009, https://doi.org/10.1109/led.2012.2193112
  28. Effect of high-energy electron beam irradiation on the device characteristics of IGZO-based transparent thin film transistors vol.60, pp.2, 2012, https://doi.org/10.3938/jkps.60.187
  29. Structural and optical properties of ZnO thin films grown by using atomic layer deposition on O2-plasma-treated flexible PES substrates vol.60, pp.12, 2009, https://doi.org/10.3938/jkps.60.2038
  30. Effect of high-energy electron beam irradiation on the gate-bias stability of IGZO TFTs vol.60, pp.2, 2012, https://doi.org/10.3938/jkps.60.254
  31. The Effect of UV treatment on the recovery characteristics of a-IGZO-based thin film transistors vol.61, pp.6, 2009, https://doi.org/10.3938/jkps.61.852
  32. Improved Stability of Atomic Layer Deposited ZnO Thin Film Transistor by Intercycle Oxidation vol.34, pp.2, 2009, https://doi.org/10.4218/etrij.12.0211.0186
  33. Impact of Deposition Temperature of the Silicon Oxide Passivation on the Performance of Indium Zinc Oxide Thin-Film Transistors vol.51, pp.7, 2009, https://doi.org/10.7567/jjap.51.076501
  34. SiO2 완충층 두께에 따른 비정질 InGaZnO Pseudo-MOS Field Effect Transistor의 신뢰성 평가 vol.25, pp.1, 2012, https://doi.org/10.4313/jkem.2012.25.1.24
  35. Optical modeling and experimental verification of light induced phenomena in In-Ga-Zn-O thin film transistors with varying gate insulator thickness vol.111, pp.2, 2009, https://doi.org/10.1063/1.3679522
  36. The effect of Nb doping on the performance and stability of TiOx devices vol.46, pp.29, 2009, https://doi.org/10.1088/0022-3727/46/29/295102
  37. Hot-Carrier Effect on Amorphous In-Ga-Zn-O Thin-Film Transistors With a Via-Contact Structure vol.34, pp.5, 2009, https://doi.org/10.1109/led.2013.2248341
  38. Characterization and Investigation of a Hot-Carrier Effect in Via-Contact Type a-InGaZnO Thin-Film Transistors vol.60, pp.5, 2009, https://doi.org/10.1109/ted.2013.2253611
  39. Recovery characteristics of solution-processed ZTO thin-film transistors vol.63, pp.12, 2009, https://doi.org/10.3938/jkps.63.2281
  40. Trap States of the Oxide Thin Film Transistor vol.52, pp.10, 2013, https://doi.org/10.7567/jjap.52.10ma12
  41. Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors vol.113, pp.18, 2009, https://doi.org/10.1063/1.4803706
  42. SnO2 thin films doped indium prepared by the sol-gel method: structure, electrical and photoluminescence properties vol.67, pp.1, 2009, https://doi.org/10.1007/s10971-013-3047-0
  43. Photo-bias instability of metal oxide thin film transistors for advanced active matrix displays vol.28, pp.16, 2009, https://doi.org/10.1557/jmr.2013.214
  44. High carrier mobility and electrical stability under negative bias illumination stress of ZnO thin-film transistors with N2O plasma treated HfOx gate dielectrics vol.114, pp.10, 2009, https://doi.org/10.1063/1.4820944
  45. Channel Composition Effect on the Bias-Illumination-Stress Stability of Solution-Processed Transparent Oxide Thin-Film Transistors Using Amorphous Aluminum-Indium-Zinc-Oxide Channel Layers vol.3, pp.9, 2009, https://doi.org/10.1149/2.002409jss
  46. Review of Present Reliability Challenges in Amorphous In-Ga-Zn-O Thin Film Transistors vol.3, pp.9, 2009, https://doi.org/10.1149/2.013409jss
  47. Analysis of stability improvement in ZnO thin film transistor with dual-gate structure under negative bias stress vol.53, pp.4, 2014, https://doi.org/10.7567/jjap.53.04ef11
  48. Monochromatic light-assisted erasing effects of In-Ga-Zn-O thin film transistor memory with Al2O3-doped Al2O3/Al2O3 stacks (4 pages) vol.104, pp.10, 2014, https://doi.org/10.1063/1.4868387
  49. Overview of electroceramic materials for oxide semiconductor thin film transistors vol.32, pp.2, 2014, https://doi.org/10.1007/s10832-013-9858-0
  50. Effect of Ga doping concentrations, substrate temperatures and working pressures on the electrical and optical properties of ZnO thin films vol.25, pp.9, 2009, https://doi.org/10.1007/s10854-014-2105-x
  51. Flexible In-Ga-Zn-O thin-film transistors fabricated on polyimide substrates and mechanically induced instability under negative bias illumination stress vol.35, pp.1, 2009, https://doi.org/10.1007/s10832-015-0001-2
  52. The energy band tailored by Al incorporation in solution-processed IZO TFTs vol.5, pp.47, 2009, https://doi.org/10.1039/c5ra01800e
  53. Channel length dependence of negative-bias-illumination-stress in amorphous-indium-gallium-zinc-oxide thin-film transistors vol.117, pp.23, 2009, https://doi.org/10.1063/1.4922714
  54. Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In-Ga-Zn-O thin films vol.118, pp.20, 2009, https://doi.org/10.1063/1.4936552
  55. A study on the competition between bias-induced charge trapping and light-induced instability in In-Ga-Zn-O thin-film transistors vol.36, pp.1, 2016, https://doi.org/10.1007/s10832-016-0032-3
  56. Suppression of Negative Gate Bias and Illumination Stress Degradation by Fluorine-Passivated In-Ga-Zn-O Thin-Film Transistors vol.5, pp.3, 2009, https://doi.org/10.1149/2.0131603jss
  57. Silver oxide Schottky contacts and metal semiconductor field-effect transistors on SnO2thin films vol.9, pp.4, 2009, https://doi.org/10.7567/apex.9.041101
  58. Improvement in reliability of amorphous indium-gallium-zinc oxide thin-film transistors with Teflon/SiO2bilayer passivation under gate bias stress vol.55, pp.2, 2009, https://doi.org/10.7567/jjap.55.02bc17
  59. Photoelectric Property Modulation by Nanoconfinement in the Longitude Direction of Short Semiconducting Nanorods vol.8, pp.17, 2016, https://doi.org/10.1021/acsami.6b02497
  60. Analysis on Trapping Kinetics of Stress-Induced Trapped Holes in Gate Dielectric of Amorphous HfInZnO TFT vol.63, pp.6, 2009, https://doi.org/10.1109/ted.2016.2555332
  61. Suppression in the Negative Bias Illumination Instability of ZnSnO Thin-Film Transistors Using Hafnium Doping by Dual-Target Magnetron Cosputtering System vol.63, pp.9, 2009, https://doi.org/10.1109/ted.2016.2589240
  62. The Effect of Drain Bias Stress on the Instability of Turned-OFF Amorphous HfInZnO Thin-Film Transistors Under Light Irradiation vol.64, pp.1, 2009, https://doi.org/10.1109/ted.2016.2624988
  63. An oxidation-last annealing for enhancing the reliability of indium-gallium-zinc oxide thin-film transistors vol.110, pp.14, 2009, https://doi.org/10.1063/1.4979649
  64. The effect of device electrode geometry on performance after hot-carrier stress in amorphous In-Ga-Zn-O thin film transistors with different via-contact structures vol.110, pp.20, 2017, https://doi.org/10.1063/1.4983713
  65. Effects of Fluorine Doping on the Electrical Performance of ZnON Thin-Film Transistors vol.9, pp.29, 2017, https://doi.org/10.1021/acsami.7b03385
  66. Mechanism of a-IGZO TFT device deterioration—illumination light wavelength and substrate temperature effects vol.50, pp.42, 2009, https://doi.org/10.1088/1361-6463/aa864c
  67. Highly Stable Thin-Film Transistors Based on Indium Oxynitride Semiconductor vol.10, pp.18, 2009, https://doi.org/10.1021/acsami.8b02678
  68. Highly Stable AlInZnSnO and InZnO Double-Layer Oxide Thin-Film Transistors With Mobility Over 50 $\text{cm}^{2}/\text{V} \cdot \text{s}$ for High-Speed Operation vol.39, pp.4, 2009, https://doi.org/10.1109/led.2018.2805705
  69. High-performance CdScInO thin-film transistors and their stability improvement under negative bias (illumination) temperature stress vol.7, pp.44, 2019, https://doi.org/10.1039/c9tc04989d
  70. Multi- and single-step in situ microwave annealing as low-thermal-budget techniques for solution-processed indium–gallium–zinc oxide thin films vol.34, pp.1, 2019, https://doi.org/10.1088/1361-6641/aaedd4
  71. Trap-Assisted Enhanced Bias Illumination Stability of Oxide Thin Film Transistor by Praseodymium Doping vol.11, pp.5, 2019, https://doi.org/10.1021/acsami.8b18329
  72. Effects of Hydroxyl Group in AlO x Gate Insulator on the Negative Bias Illumination Instability of In‐Ga‐Zn‐O Thin Film Transistors vol.216, pp.6, 2009, https://doi.org/10.1002/pssa.201800737
  73. P‐8: A Depletion‐Mode Compatible Gate Driver on Array for a‐IGZO TFT‐OLED Displays vol.50, pp.1, 2009, https://doi.org/10.1002/sdtp.13157
  74. Amorphous InGaZnO and metal oxide semiconductor devices: an overview and current status vol.7, pp.40, 2019, https://doi.org/10.1039/c9tc03933c
  75. 12.5: A Depletion‐mode Compatible Gate Driver on Array for a‐IGZO TFT‐OLED Displays vol.50, pp.1, 2009, https://doi.org/10.1002/sdtp.13408
  76. Fabrication of indium gallium zinc oxide phototransistors via oxide-mesh insertion for visible light detection vol.8, pp.1, 2020, https://doi.org/10.1039/c9tc04982g
  77. Multifunctional, Room-Temperature Processable, Heterogeneous Organic Passivation Layer for Oxide Semiconductor Thin-Film Transistors vol.12, pp.2, 2009, https://doi.org/10.1021/acsami.9b16898
  78. Verification of microwave annealing ambient effect on sol-gel-processed amorphous In–Ga–Zn–O thin-film transistors and application to inverter circuit vol.35, pp.3, 2009, https://doi.org/10.1088/1361-6641/ab6abf
  79. Abnormal threshold voltage shift caused by trapped holes under hot-carrier stress in a-IGZO TFTs vol.53, pp.8, 2009, https://doi.org/10.1088/1361-6463/ab5999
  80. Origin of bias-stress and illumination instability in low-cost, wide-bandgap amorphous Si-doped tin oxide-based thin-film transistors vol.53, pp.23, 2020, https://doi.org/10.1088/1361-6463/ab7c08
  81. P‐3: Effects of Negative Bias Illumination Stress on IGZO Device and Luminance Behaviors in OLED Display Panel Operated by AC Conditions vol.51, pp.1, 2020, https://doi.org/10.1002/sdtp.14126
  82. Organic materials as a passivation layer for metal oxide semiconductors vol.8, pp.43, 2020, https://doi.org/10.1039/d0tc02379e
  83. A cost‐effective fluorination method for enhancing the performance of metal oxide thin‐film transistors vol.29, pp.5, 2009, https://doi.org/10.1002/jsid.1013
  84. Reliability study on deep-ultraviolet photodetectors based on ZnGa2O4 epilayers grown by MOCVD vol.555, pp.None, 2021, https://doi.org/10.1016/j.apsusc.2021.149657
  85. Effect of Sputtering Oxygen Partial Pressure on the Praseodymium-Doped InZnO Thin Film Transistor Using Microwave Photoconductivity Decay Method vol.12, pp.9, 2021, https://doi.org/10.3390/mi12091044
  86. Mobility-stability trade-off in oxide thin-film transistors vol.4, pp.11, 2009, https://doi.org/10.1038/s41928-021-00671-0
  87. The effect of charge transfer transition on the photostability of lanthanide-doped indium oxide thin-film transistors vol.2, pp.1, 2021, https://doi.org/10.1038/s43246-021-00193-4