• Title/Summary/Keyword: Gate Driver

Search Result 215, Processing Time 0.026 seconds

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process

  • Cho, Sung-Haeng;Choi, Yong-Mo;Kim, Hyung-Jun;Jeong, Yu-Gwang;Jeong, Chang-Oh;Kim, Shi-Yul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit

Effect of a-Si:H TFT Instability on TFT-LCD Panel with Integrated Gate Driver Circuits (Gate 구동 회로를 집적한 TFT-LCD에서 a-Si:H TFT Instability의 영향)

  • Lee, Hyun-Su;Yi, Jun-Sin;Lee, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.172-175
    • /
    • 2005
  • a-Si TFT는 TFT-LCD의 화소 스위칭(swiching) 소자로 폭넓게 이용되고 있다. 현재는 a-Si을 이용하여 gate drive IC를 기판에 집적하는 기술이 연구, 적용되고 있는데 이때 가장 큰 제약은 문턱 전압의 이동이다. 펄스(pulse)형태로 인가되는 gate 전압에 의한 문턱 전압 이동은 a-Si:H gate에 인가되는 펄스의 크기, duty cycle, drain pulse의 크기 및 동작 온도에 기인하며 실험결과를 통해 입증된다. 초기의 DC Stress 측정 Data를 이용하여 문턱전압이동을 모델링/시뮬레이션한 결과 a-Si:H gate 회로설계 및 펄스 조건에 따라 stress시간에 따른 gate의 출력 파형 예측이 가능하고 상온에서 Von=21V를 인가한 결과, 약 4년후에서 시프트레지스터 출력 파형이 열화되기 시작한다.

  • PDF

Isolated Power Supply for Multiple Gate Drivers using Wireless Power Transfer System with Single-Antenna Receiver

  • Lim, Chang-Jong;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1382-1390
    • /
    • 2017
  • This paper presents a power supply for gate drivers, which uses a magnetic resonance wireless power transfer system. Unlike other methods where multiple antennas are used to supply power for the gate drivers, the proposed method uses a single antenna in an insulated receiver to make multiple mutually isolated power supplies. The power transmitted via single antenna is distributed to multiple power supplies for gate drivers through resonant capacitors connected in parallel that also block DC bias. This approach has many advantages over other methods, where each gate driver needs to be supplied with power using multiple receiver antennas. The proposed method will therefore lead to a reduction in production costs and circuit area. Because the proposed circuit uses a high resonance frequency of 6.78 MHz, it is possible to implement a transmitter and a receiver using a small-sized spiral printed-circuit-board-type antenna. This paper used a single phase-leg circuit configuration to experimentally verify the performance characteristics of the proposed method.

An Imrpoved Gate Control Scheme for Overvoltage Clamping under IGBT Series Connection (IGBT 직렬 연결시 과전압 제한을 위한 게이트 구동기법)

  • Kim, Wan-Jong;Choe, Chang-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.83-88
    • /
    • 1999
  • Series connection of power semiconductor devices is selected in high voltage and high power applications. It is important to prevent the overvoltage from being induced across a device above ratings by the proper voltage balancing in the field of IGBT series connection. In addition, the overvoltage induced by a stray inductance has to be limited in the high power circuit. This paper proposes a new gate control scheme which can balance the voltage properly and limit the overshoot by controlling the slope of collector voltage under the turn-off transient in the series connected IGBTs. The proposed gate control scheme changes the slope of collector voltage by sensing the collector voltage and controlling the gate signal actively. The new series connected IGBT gate driver is made and its validity is verified by the experimental results for series connected IGBT circuit.

  • PDF

Design of High Voltage Switch for Pulse Discharging (펄스 방전을 위한 고전압 스위치 설계)

  • Nimo, Appiah Gideon;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.361-362
    • /
    • 2016
  • Presented in this paper is the design of a high voltage switch module made up of MOSFETs, pulse transformers and their gate driver circuits compactly fitted onto a single PCB module. The ease by which the switch modules can be configured (series stacking and/or parallel stacking) to meet future load variations allows for flexible operation of this design. In addition, the detailed implementation of the gate driver circuit for reliable and easier switch synchronization is also described in this paper. The stored energy in the capacitor bank of a 15kV, 4.5kJ/s peak power capacitor charger was discharged using the developed high voltage switch, and by experimental results, the operation of the proposed circuit was verified to be effectively used as a switch for pulse discharging.

  • PDF

A New DC-DC Converter for Gate Driver Circuit Using Low Temperature Poly-Si TFT

  • Choi, Jin-Young;Cho, Byoung-Chul;Shim, Hyun-Sook;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1011-1014
    • /
    • 2004
  • In this paper, we present a new DC-DC converter for gate driver circuit in low temperature poly-Si TFT technology. It is composed of a newly developed charge pump circuit and a regulator circuit. When the input voltage is 5V, the efficiency of a positive charge pump used in the DC-DC converter and that of a negative charge pump is 69.0% and 57.1%, respectively. The output voltage of DC-DC converter varies 200mV when the target voltages of DC-DC converter are 9V, -6V and the threshold voltage of TFTs varies ${\pm}$ 0.5V.

  • PDF

Design of Bootstrap Power Supply for Half-Bridge Circuits using Snubber Energy Regeneration

  • Chung, Se-Kyo;Lim, Jung-Gyu
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.294-300
    • /
    • 2007
  • This paper deals with a design of a bootstrap power supply using snubber energy regeneration, which is used to power a high-side gate driver of a half-bridge circuit. In the proposed circuit, the energy stored in the low-side snubber capacitor is transferred to the high-side bootstrap capacitor without any magnetic components. Thus, the power dissipation in the RCD snubber can be effectively reduced. The operation principle and design method of the proposed circuit are presented. The experimental results are also provided to show the validity of the proposed circuit.

High Efficiency and Small Area DC-DC Converter for Gate Driver using LTPS TFTs

  • Kim, Kyung-Rok;Kim, Hyun-Wook;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1085-1088
    • /
    • 2007
  • A new DC-DC converter was designed for gate driver circuit using low temperature poly-Si TFT technology. To achieve high efficiency and small area, we proposed a cross-coupled type DC-DC converter which converts 5V of input voltage to 9V of output voltage and supplies 120$\mu$A of current to load. Its efficiency is 92.9% and the area is reduced as much as 19% compared to the previously reported latch type DC-DC converter.

  • PDF

A Novel Driving Method for Cost Competitive a-Si TFT-LCD

  • Moon, Su-Hwan;Lim, Hong-Youl;Kim, Dae-Kyu;Lee, Min-Kyung;Ko, Kyung-Tai;Lee, Jun-Ho;Yoon, Sung-Hoe;Kim, Byeong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.470-473
    • /
    • 2009
  • We have developed a novel driving method, Six times Rate Driving(SRD) for the purpose of making cost competitive TFT-LCD. By applying SRD method to an a-Si TFT-LCD, the driving rate was increased six times as it was named but the number of data lines and so its D-Ics were reduced to one sixth of the conventional one which resulted in the cost saving of that much. We also newly designed the gate driver in order to avoid any expansion of the bezel width caused by applying SRD. Our newly developed driving technology, SRD was successfully applied to 7.0-inch WSVGA (1024 ${\times}$ 600) TFT-LCD which can be driven with only one data D-IC and here introduced.

  • PDF