• Title/Summary/Keyword: Gas-Liquid Reaction

Search Result 247, Processing Time 0.031 seconds

Thermal Degradation of High Molecular Components Obtained from Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해로부터 생성된 고분자성분의 열적분해)

  • Oh, Sea Cheon;Ryu, Jae Hun;Kwak, Hyun;Bae, Seong-Youl;Lee, Kyong-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • The thermal degradation characteristics of high molecular components obtained from pyrolysis of mixed waste plastics have been studied by thermogravimetric analysis (TGA) and gas chromatography spectrometry (GC-MS). The kinetics of thermal degradation has been studied by a conventional nonisothermal thermogravimetric technique at several heating rates between 10 and $50^{\circ}C/min$. The dynamic thermogravimetric analysis curve and its derivative have been analyzed using a variety of analytical methods reported in the literature to obtain information on the kinetic parameters such as activation energies and reaction orders. The yields of liquid products have been monitored by batch pyrolysis reactor under various reaction temperatures and reaction times. And the characteristic of liquid products with the increase in reaction temperature has been performed by GC-MS.

Study on the Luminescence Properties according to ZnS multi-phase (ZnS multi-phase에 따른 발광특성 연구)

  • 김광복;김용일;천희곤;조동율;구경완
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • The crystal structure of ZnS fabricated by gas-liquid phase reaction was refined by the Rietveld program using X-ray diffraction data. The R-weighted pattern (R$\sub$wp/) of ZnS powder was 10.85%. The fraction of HCP phase was closely related with extra amount of H$_2$S gas. The lattice parameters and crystalline size were changed by the relative ratio of multi-phase. The luminescence property of ZnS:Cu, Al green phosphors prepared by conventional methods was good in the range of 91∼94% and 150∼190${\AA}$, respectively. According to the maximum entropy electron density(MEED) methods, any defects in (001) plane of cubic phase were not found. We suggest that both the Rietveld and maximum entropy density methods may be useful tools for studying luminescence mechanism of other phosphors materials.

  • PDF

The FEM Analysis of Membrane for LNG Storage Tank (LNG 저장탱크용 멤브레인 개발을 위한 유한요소해석)

  • Oh B.T.;Hong S.H.;Yoon I.S.;Kim Y.K.;Seo H.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.4 s.18
    • /
    • pp.47-52
    • /
    • 2002
  • Analytical studies have been performed to investigate the strength of the membrane and the reaction force at the anchor point. Using nonlinear FEM code and experiments, the stress analysis of the corrugated membrane related the cryogenic liquid pressure and thermal loading is performed to ensure the stability and fatigue strength of the membrane. This paper reports on the FEM results of membrane.

  • PDF

Quasi-Solid-State Hybrid Electrolytes for Electrochemical Hydrogen Gas Sensor

  • Kim, Sang-Hyung;Han, Dong-Kwan;Hong, SeungBo;Jeong, Bo Ra;Park, Bok-Seong;Han, Sang-Do;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.294-301
    • /
    • 2019
  • The quasi-solid-state hybrid electrolytes were synthesized by chemical cross-linking reaction of methacrylate-functionalized $SiO_2$ ($MA-SiO_2$) and tetra (ethylene glycol) diacrylate in aqueous electrolyte. A quasi-solid-state electrolyte synthesized by 6 wt.% $MA-SiO_2$ exhibited a high ionic conductivity of $177mS\;cm^{-1}$ at room temperature. The electrochemical $H_2$ sensor assembled with quasi-solid-state electrolyte showed relatively fast response and high sensitivity for hydrogen gas at ambient temperature, and exhibited better durability and stability than the liquid electrolyte-based sensor. The simple construction of the sensor and its sensing characteristics make the quasi-solid-state hydrogen sensor promising for practical application.

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

Effects of reaction conditions on composition of the organic liquid product during the deoxygenation process of palm oil (팜유(Plam Oil)의 탈산소 공정 중 운전 조건이 생성물의 조성에 미치는 영향)

  • Kim, Sungtak;Jang, Jeong Hee;Ahn, Minhwei;Kwak, Yeonsu;Han, Gi Bo;Jeong, Byung Hun;Han, Jeong Sik;Kim, Jae-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.865-875
    • /
    • 2018
  • Selection of optimum reaction conditions during deoxygenation process of palm oil is essential factor to obtain the maximum yield of bio-jet fuel. In this context, the deoxygenation of palm oil was carried out in a fixed bed reactor with an internal diameter of 1 inch loaded with a 1 wt.% $Pt/Al_2O_3$ catalyst. The composition of the organic liquid product(OLP), which can be utilized as a transportation fuel through the upgrading process, was analyzed by a gas chromatography method. The palm oil/hydrogen ratio and hydrogen pressure in the feed affected the decarboxylation(DCB) and hydrodeoxygenation(HDO) reactions, resulting in a change in the composition of the OLP. As the reaction temperature increased, the continuous cracking reaction of the deoxygenation product was promoted and the product composition in the $C_5{\sim}C_{14}$ region was increased. Thus, the results can help to understand the characteristics of deoxidation reaction of palm oil as well as the subsequent process, hydro-upgrading, to obtain the maximum yield of bio-jet fuel.

SOx and NOx removal performance by a wet-pulse discharge complex system (습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성)

  • Park, Hyunjin;Lee, Whanyoung;Park, Munlye;Noh, Hakjae;You, Junggu;Han, Bangwoo;Hong, Keejung
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.

A Spectroscopic Study on Singlet Oxygen Production from Different Reaction Paths Using Solid Inorganic Peroxides as Starting Materials

  • Li, Qingwei;Chen, Fang;Zhao, Weili;Xu, Mingxiu;Fang, Benjie;Zhang, Yuelong;Duo, Liping;Jin, Yuqi;Sang, Fengting
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1656-1660
    • /
    • 2007
  • Using solid inorganic peroxides (including Li2O2, Na2O2, SrO2 and BaO2) as starting materials, three reaction paths for singlet oxygen (1O2) production were developed and studied. Their 1O2 emission spectra in the near- IR region and visible region from these reaction paths were simultaneously recorded by a near-IR sensitive Optical Multichannel Analyzer and a visible sensitive Optical Spectrum Analyzer, respectively. The comparison of their 1O2 emission spectra indicated that: (1) in term of the efficiency for 1O2 production, the gasliquid- solid reaction path (in which Cl2 or HCl and H2O reacted with the solid inorganic peroxides suspension in CCl4) was prior to the gas-solid reaction path (in which Cl2 or HCl reacted with the solid inorganic peroxides suspension in CCl4), but was inferior to the gas-liquid reaction path (in which Cl2 or HCl reacted with the solid inorganic peroxides solution in H2O or D2O); (2) the alkali metal peroxides (such as Li2O2 and Na2O2) was prior to the alkaline earth metal peroxides (such as SrO2 and BaO2) as the solid reactants, and Cl2 was favorable than HCl as the gas reactant in efficiency for 1O2 production in these reaction paths.

Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle (이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

Predicting Micro-Thickness of Phase Fronts in Propellants (추진제의 마이크로 스케일 상면 두께 예측)

  • Yoh Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-21
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF