DOI QR코드

DOI QR Code

Effects of reaction conditions on composition of the organic liquid product during the deoxygenation process of palm oil

팜유(Plam Oil)의 탈산소 공정 중 운전 조건이 생성물의 조성에 미치는 영향

  • Kim, Sungtak (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Jang, Jeong Hee (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Ahn, Minhwei (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Kwak, Yeonsu (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Han, Gi Bo (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Jeong, Byung Hun (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Han, Jeong Sik (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Kim, Jae-Kon (Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority)
  • 김성탁 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 장정희 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 안민회 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 곽연수 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 한기보 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 정병훈 (제4기술연구본부, 국방과학연구소) ;
  • 한정식 (제4기술연구본부, 국방과학연구소) ;
  • 김재곤 (한국석유관리원 석유기술연구소)
  • Received : 2018.08.16
  • Accepted : 2018.09.18
  • Published : 2018.09.30

Abstract

Selection of optimum reaction conditions during deoxygenation process of palm oil is essential factor to obtain the maximum yield of bio-jet fuel. In this context, the deoxygenation of palm oil was carried out in a fixed bed reactor with an internal diameter of 1 inch loaded with a 1 wt.% $Pt/Al_2O_3$ catalyst. The composition of the organic liquid product(OLP), which can be utilized as a transportation fuel through the upgrading process, was analyzed by a gas chromatography method. The palm oil/hydrogen ratio and hydrogen pressure in the feed affected the decarboxylation(DCB) and hydrodeoxygenation(HDO) reactions, resulting in a change in the composition of the OLP. As the reaction temperature increased, the continuous cracking reaction of the deoxygenation product was promoted and the product composition in the $C_5{\sim}C_{14}$ region was increased. Thus, the results can help to understand the characteristics of deoxidation reaction of palm oil as well as the subsequent process, hydro-upgrading, to obtain the maximum yield of bio-jet fuel.

식물성 오일을 이용한 바이오 항공유의 제조공정에서 탈산소 반응의 적절한 운전조건 선정을 통한 생성물 물성 최적화는 최대의 바이오항공유 수율을 얻기 위해 필수적인 요소이다. 이에 따라 팜유의 탈산소화 반응이 1 wt.% $Pt/Al_2O_3$촉매가 장입된 내경이 1인치인 고정층 반응기에서 수행되었다. 업그레이딩 공정을 통하여 수송 연료로 활용될 수 있는 액체 생성물(organic liquid product)은 가스크로마토그래피 방법으로 그 조성을 분석하였다. 피드 내의 팜유/수소 비율과 수소 압력은 탈카르복실레이션과 수첨탈산소 반응에 영향을 주어 생성물의 조성 변화를 초래하였다. 반응 온도가 증가함에 따라 탈산소 생성물의 연속적 크래킹 반응이 촉진되어 $C_5{\sim}C_{14}$영역의 생성물 조성이 증가하였다. 본 연구의 결과는 팜유의 탈산소화 반응 특성의 이해 뿐 아니라 연속 공정인 수첨 업그레이딩 공정을 통한 바이오 항공유의 제조에 도움을 줄 수 있다.

Keywords

References

  1. H. Nojoumi, I. Dincer, G. F. Naterer, "Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion", Int J Hydrogen Energy., Vol.34, No.3, pp. 1363-1369, (2009). https://doi.org/10.1016/j.ijhydene.2008.11.017
  2. F. Rosillo-Calle, S. Teelucksingh, D. Thran, M. Seiffert, "IEA Boienergy", pp. (2012).
  3. A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. F. Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, "The Path Forward for Biofuels and Biomaterials", Science, Vol.311, No.5760, pp. 484-489, (2006). https://doi.org/10.1126/science.1114736
  4. G. W. Huber, S. Iborra, A. Corma, "Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering", Chem. Rev., Vol.106, No.9, pp. 4044-4098, (2006). https://doi.org/10.1021/cr068360d
  5. G. W. Huber, A. Corma, "Synergies between Bio- and Oil Refineries for theProduction of Fuels from Biomass", Angew. Chem. Int. Ed., Vol.46, pp. 7184-7201, (2007). https://doi.org/10.1002/anie.200604504
  6. H. Zhang, H. Lin, W. Wang, Y. Zheng, P. Hu, "Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect", Appl. Catal. B, Vol.150-151, pp. 238-248, (2014). https://doi.org/10.1016/j.apcatb.2013.12.006
  7. H. Wang, H. Lin, P. Feng, X. Han, Y. Zheng, "Integration of catalytic cracking and hydrotreating technology for triglyceride deoxygenation", Catal. Today, pp. in press, (2017).
  8. X. Wu, P. Jiang, F. Jin, J. Liu, Y. Zhang, L. Zhu, T. Xia, K. Shao, T. Wang, Q. Li, "Production of jet fuel range biofuels by catalytic transformation of triglycerides based oils", Fuel, Vol.188, pp. 205-211, (2017). https://doi.org/10.1016/j.fuel.2016.10.030
  9. L. Hermida, A. Z. Abdullah, A. R. Mohamed, "Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism", Renew. Sustain. Energy Rev., Vol.42, pp. 1223-1233, (2015). https://doi.org/10.1016/j.rser.2014.10.099
  10. M. Y. Kim, J.-K. Kim, M.-E. Lee, S. Lee, M. Choi, "Maximizing Biojet Fuel Production from Triglyceride: Importance of the Hydrocracking Catalyst and Separate Deoxygenation/Hydrocracking Steps", ACS Catal., Vol.7, pp. 6256-6267, (2017). https://doi.org/10.1021/acscatal.7b01326
  11. T. Cattermole, "Gulfstream G450 crosses the Atlantic on 50/50 biofuel-jetfuel blend, NEW ATLAS, http://newatlas.com/honeywell-gulstream-g450-transatlantic-bi ofuel/18998/", pp.(accessedApr17,2017).
  12. D. Chiaramonti, M. Prussi, M. Buffi, D. Tacconi, "Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels", Appl. Eergy., Vol.136, pp. 767-774, (2014). https://doi.org/10.1016/j.apenergy.2014.08.065
  13. A. Ray, PROCESSES FOR PRODUCING FUELS FROM A RENEWABLE FEED, US9,822,314B2, UOP LLC, US, 2017.
  14. R. Mawhood, E. Gazis, S. de Jong, R. Hoefnagels, R. Slade, "Production pathways for renewable jet fuel: a review of commercialization status and future prospects", Biofuels, Bioprod. Bioref., Vol.10, pp. 462-484, (2016). https://doi.org/10.1002/bbb.1644
  15. R. W. Gosselink, S. A. W. Hollak, S.-W. Chang, J. v. Haveren, K. P. d. Jong, J. H. Bitter, D. S. v. Es, "Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds", ChemSus Chem, Vol.6, pp. 1576-1594, (2013). https://doi.org/10.1002/cssc.201300370
  16. B. Veriansyah, J. Y. Han, S. K. Kim, S.-A. Hong, Y. J. Kim, J. S. Lim, Y.-W. Shu, S.-G. Oh, J. Kim, "Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts", Fuel, Vol.94, pp. 578-585, (2012). https://doi.org/10.1016/j.fuel.2011.10.057
  17. J. G. Immer, M. J. Kelly, H. H. Lamb, "Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids", Appl. Catal. A, Vol.375, pp. 134-139, (2010). https://doi.org/10.1016/j.apcata.2009.12.028
  18. R. Raut, V. V. Banakar, S. Darbha, "Catalytic decarboxylation of non-edible oils over three-dimensional, mesoporous silica-supported Pd", J. Mol. Catal. A: Chem., Vol.417, pp. 126-134, (2016). https://doi.org/10.1016/j.molcata.2016.03.023
  19. B. Peng, Y. Yao, C. Zhao, J. A. Lercher, "Towards Quantitative Conversion of Microalgae Oil to Diesel-Range Alkanes with Bifunctional Catalysts", Angew. Chem. Int. Ed., Vol.51, pp. 2072-2075, (2012). https://doi.org/10.1002/anie.201106243
  20. O. I. Senol, T.-R. Viljava, A. O. I. Krause, "Hydrodeoxygenation of methyl esters on sulphided NiMo/g-$Al_2O_3$ and CoMo/g-$Al_2O_3$ catalysts", Catal. Today, Vol.100, pp. 331-335, (2005). https://doi.org/10.1016/j.cattod.2004.10.021
  21. T. Morgan, E. Santillan-Jimenez, A. E. Harman-Ware, Y. Ji, D. Grubb, M. Crocker, "Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts", Chem. Eng. J., Vol.189-190, pp. 346-355, (2012). https://doi.org/10.1016/j.cej.2012.02.027
  22. J. Horacek, D. Kubicka, "Bio-oil hydrotreating over conventional CoMo & NiMo catalysts: The role of reaction conditions and additives", Fuel, Vol.198, pp. 49-57, (2016).
  23. B. P. Pattanaik, R. D. Misra, "Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review", Renew. Sustain. Energy Rev., Vol.73, pp. 545-557, (2017). https://doi.org/10.1016/j.rser.2017.01.018
  24. A. Vita, L. Pino, F. Cipiti, M. Lagana, V. Recupero, "Biogas as renewable raw material for syngas production by tri-reforming process over NiCeO2 catalysts: Optimal operative condition and effect of nickel content", Fuel Processing Technology, Vol.127, pp. 47-58, (2014). https://doi.org/10.1016/j.fuproc.2014.06.014
  25. R. Sotelo-Boyas, Y. Liu, T. Minowa, "Renewable Diesel Production from the Hydrotreating of Rapeseed Oil with Pt/Zeolite and NiMo/$Al_2O_3$Catalysts",Ind. Eng. Chem. Res., Vol.50, pp. 2791-2799, (2011). https://doi.org/10.1021/ie100824d
  26. E. Santillan-Jimenez, M. Crocker, "Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation", J. Chem. Technol. Biotechnol., Vol.87, pp. 1041-1050, (2012). https://doi.org/10.1002/jctb.3775
  27. A. S. Berenblyum, T. A. Podoplelova, R. S. Shamsiev, E. A. Katsman, V. Y. Danyushevsky, "On the Mechanism of Catalytic Conversion of Fatty Acids into Hydrocarbons in the Presence of Palladium Catalysts on Alumina", Pet. Chem., Vol.51, pp. 336-341, (2011). https://doi.org/10.1134/S0965544111050069
  28. P. Maki-Arvela, B. Rozmyslowicz, S. Lestari, O. Simakova, K. Eranen, T. Salmi, D. Y. Murzin, "Catalytic Deoxygenation of Tall Oil Fatty Acid over Palladium Supported on Mesoporous Carbon", Energy & Fuels, Vol.25, No.7, pp. 2815-2825, (2011). https://doi.org/10.1021/ef200380w