DOI QR코드

DOI QR Code

A Spectroscopic Study on Singlet Oxygen Production from Different Reaction Paths Using Solid Inorganic Peroxides as Starting Materials

  • Li, Qingwei (Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Chen, Fang (Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Zhao, Weili (Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Xu, Mingxiu (Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Fang, Benjie (Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Zhang, Yuelong (Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Duo, Liping (Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Jin, Yuqi (Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Sang, Fengting (Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences)
  • Published : 2007.10.20

Abstract

Using solid inorganic peroxides (including Li2O2, Na2O2, SrO2 and BaO2) as starting materials, three reaction paths for singlet oxygen (1O2) production were developed and studied. Their 1O2 emission spectra in the near- IR region and visible region from these reaction paths were simultaneously recorded by a near-IR sensitive Optical Multichannel Analyzer and a visible sensitive Optical Spectrum Analyzer, respectively. The comparison of their 1O2 emission spectra indicated that: (1) in term of the efficiency for 1O2 production, the gasliquid- solid reaction path (in which Cl2 or HCl and H2O reacted with the solid inorganic peroxides suspension in CCl4) was prior to the gas-solid reaction path (in which Cl2 or HCl reacted with the solid inorganic peroxides suspension in CCl4), but was inferior to the gas-liquid reaction path (in which Cl2 or HCl reacted with the solid inorganic peroxides solution in H2O or D2O); (2) the alkali metal peroxides (such as Li2O2 and Na2O2) was prior to the alkaline earth metal peroxides (such as SrO2 and BaO2) as the solid reactants, and Cl2 was favorable than HCl as the gas reactant in efficiency for 1O2 production in these reaction paths.

Keywords

References

  1. Kodymova, J. Proc. SPIE 2005, 5958, 595818-1-11
  2. Yuryshev, N. N. Quantum Electron. 1996, 26, 567 https://doi.org/10.1070/QE1996v026n07ABEH000730
  3. Carrol, D. L.; Verdeyen, J. T.; King, D. M.; Zimmerman, J. W.; Laystrom, J. K.; Woodard, B. S.; Benavides, G. F.; Kittell, K.; Stafford, D. S.; Solomon, W. C. Appl. Phys. Lett. 2005, 86, 111104-1-3 https://doi.org/10.1063/1.1883317
  4. Belousov, V. P.; Belousova, I. M.; Grenishin, A. S.; Danilov, O. B.; Kiselev, V. M.; Kris'ko, A. V.; Mak, A. A.; Murav'eva, T. D.; Sosnov, V. N. Opt. and Spectr. 2003, 95, 888 https://doi.org/10.1134/1.1635472
  5. Prein, M.; Adam, W. Angew. Chem. Int. Ed. 1996, 35, 477 https://doi.org/10.1002/anie.199604771
  6. Shim, S. C.; Song, J. S. Bull. Korean Chem. Soc. 1984, 5, 265
  7. Ha, J. H.; Jung, G. Y.; Kim, M. S.; Lee, Y. H.; Shin, K.; Kim, Y. R. Bull. Korean Chem. Soc. 2001, 22, 63
  8. Ha, J. H.; Kim, M. S.; Park, Y. I.; Ryu, S.; Park, M.; Shin, K.; Kim, Y. R. Bull. Korean Chem. Soc. 2002, 23, 281 https://doi.org/10.5012/bkcs.2002.23.2.281
  9. Park, Y. T.; Lee, S. W.; Song, M. S.; Bae, J. W.; Chung, M. S. Bull. Korean Chem. Soc. 1990, 11, 77
  10. Burrows, H. D.; Ernestova, L. S.; Kemp, T. J.; Skurlatov, Y. I.; Pyrmal, A. P.; Yermakov, A. N. Prog. React. Kinet. Mec. 1998, 23, 145
  11. Alfano, A. J.; Christe, K. O. Angew. Chem. Int. Ed. 2002, 41, 3252 https://doi.org/10.1002/1521-3773(20020902)41:17<3252::AID-ANIE3252>3.0.CO;2-G
  12. Alfano, A. J.; Christe, K. O. US Patent 6 623 718 B1, 2003
  13. Alfano, A. J.; Christe, K. O. USA AFRL report, AFRL-PR-EDTR- 2004-0411, 2004
  14. Khan, A. U.; Kasha, M. J. Am. Chem. Soc. 1970, 92, 3293 https://doi.org/10.1021/ja00714a010
  15. Li, Q. W.; Chen, F.; Zhao, W. L.; Duo, L. P.; Jin, Y. Q.; Sang, F. T. et al. High Power Laser and Particles Beam (Chinese) 2006, 18, 1761
  16. Jenny, T. A.; Turro, N. J. Tetrahedron Lett. 1982, 23, 2932
  17. Bromberg, A.; Foote, C. S. J. Phys. Chem. 1989, 93, 3968 https://doi.org/10.1021/j100347a020
  18. Schmidt, R. J. Phys. Chem. 1996, 100, 8049 https://doi.org/10.1021/jp960464c
  19. Kajiwara, T.; Kearns, D. R. J. Am. Chem. Soc. 1973, 95, 5886- 5890 https://doi.org/10.1021/ja00799a009
  20. Rogers, M. A. J.; Snowden, P. T. J. Am. Chem. Soc. 1982, 104, 5541 https://doi.org/10.1021/ja00384a070
  21. Hurst, J. R.; McDonald, J. D.; Schuster, G. B. J. Am. Chem. Soc. 1982, 104, 2065 https://doi.org/10.1021/ja00371a065
  22. Held, A. M.; Halko, D. J.; Hurst, J. K. J. Am. Chem. Soc. 1978, 100, 5732 https://doi.org/10.1021/ja00486a025

Cited by

  1. Batteries and Possible Origins vol.3, pp.20, 2012, https://doi.org/10.1021/jz301359t
  2. Mechanism and performance of lithium–oxygen batteries – a perspective vol.8, pp.10, 2017, https://doi.org/10.1039/C7SC02519J
  3. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions pp.09359648, 2019, https://doi.org/10.1002/adma.201804587
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium–Oxygen Battery vol.128, pp.24, 2007, https://doi.org/10.1002/ange.201602142
  6. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium–Oxygen Battery vol.55, pp.24, 2007, https://doi.org/10.1002/anie.201602142
  7. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries vol.2, pp.5, 2007, https://doi.org/10.1038/nenergy.2017.36
  8. Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future vol.120, pp.14, 2007, https://doi.org/10.1021/acs.chemrev.9b00609
  9. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation vol.13, pp.5, 2021, https://doi.org/10.1038/s41557-021-00643-z
  10. Singlet Oxygen in Electrochemical Cells: A Critical Review of Literature and Theory vol.121, pp.20, 2021, https://doi.org/10.1021/acs.chemrev.1c00139