DOI QR코드

DOI QR Code

Quasi-Solid-State Hybrid Electrolytes for Electrochemical Hydrogen Gas Sensor

  • Kim, Sang-Hyung (Department of Chemical Engineering, Hanyang University) ;
  • Han, Dong-Kwan (Department of Chemical Engineering, Hanyang University) ;
  • Hong, SeungBo (Department of Chemical Engineering, Hanyang University) ;
  • Jeong, Bo Ra (Department of Chemical Engineering, Hanyang University) ;
  • Park, Bok-Seong (Engineering & Technology, Sin Myung ENTEC Co., Ltd.) ;
  • Han, Sang-Do (R&D Center, ShinWoo Electronics Co., Ltd.) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
  • Received : 2019.02.18
  • Accepted : 2019.04.11
  • Published : 2019.09.30

Abstract

The quasi-solid-state hybrid electrolytes were synthesized by chemical cross-linking reaction of methacrylate-functionalized $SiO_2$ ($MA-SiO_2$) and tetra (ethylene glycol) diacrylate in aqueous electrolyte. A quasi-solid-state electrolyte synthesized by 6 wt.% $MA-SiO_2$ exhibited a high ionic conductivity of $177mS\;cm^{-1}$ at room temperature. The electrochemical $H_2$ sensor assembled with quasi-solid-state electrolyte showed relatively fast response and high sensitivity for hydrogen gas at ambient temperature, and exhibited better durability and stability than the liquid electrolyte-based sensor. The simple construction of the sensor and its sensing characteristics make the quasi-solid-state hydrogen sensor promising for practical application.

Keywords

References

  1. M. Inci and O. Turksoy, J. Cleaner Production, 2019, 213, 1353-1370. https://doi.org/10.1016/j.jclepro.2018.12.281
  2. T. Sadhasivam, K. Dhanabalan, S.-H. Roh, T.-H. Kim, K.-W. Park, S. Jung, M. D. Kurkuri, H.-Y. Jung, Int J Hydrogen Energy, 2017, 42(7), 4415-4433. https://doi.org/10.1016/j.ijhydene.2016.10.140
  3. H.-Y. Park, T.-Y. Jeon, K.-S. Lee, S. J. Yoo, Y.-E. Sung and J. H. Jang, J. Electrochem. Sci. Technol., 2016, 7(4), 269-276. https://doi.org/10.33961/JECST.2016.7.4.269
  4. B. H. Weiller, J. D. Barrie, K. A. Aitchison and P. D. Chaffee, Mater. Res. Soc. Symp. Proc. 1994, 360, 535-540. https://doi.org/10.1557/PROC-360-535
  5. R. Thimmappa, S. Shafi, S. Freunberger and M.O. Thotiyl, Int. J. Hydrogen Energy, 2016, 41(47), 22305-22315. https://doi.org/10.1016/j.ijhydene.2016.08.057
  6. H. Han, S. Baik, B. Xu, J. Seo, S. Lee, S. Shin, J. Lee, J. H. Koo, Y. Mei, C. Pang and T. Lee, Adv. Funct. Mater., 2017, 27, 1701618. https://doi.org/10.1002/adfm.201701618
  7. M. Shi and F. C. Anson, J. Electroanal. Chem., 1996, 415(1-2), 41-46. https://doi.org/10.1016/S0022-0728(96)04687-6
  8. B. Limoges, C. Degrand and P. Brossier, J. Electroanal. Chem., 1996, 402(1-2), 175-187. https://doi.org/10.1016/0022-0728(95)04182-6
  9. F. H. Garzon, R. Mukundan and E. L. Brosha, Solid State Ionics, 2000, 136-137, 633-638. https://doi.org/10.1016/S0167-2738(00)00348-9
  10. S. Akbar and W. Weppner, J Mater. Sci., 2003, 38(23), 4639-4660. https://doi.org/10.1023/A:1027454414224
  11. J. Zosel, G. Schiffel, F. Gerlach, K. Ahlborn, U. Sasum, V. Vashock and U. Guth, Solid State Ionics, 2006, 177(26-32), 2301-2304. https://doi.org/10.1016/j.ssi.2006.01.004
  12. G. Korotcenkov, S. D. Han and J. R. Stetter, Chem. Rev., 2009, 109(3), 1402-1433. https://doi.org/10.1021/cr800339k
  13. T. Hubert, L. Boon-Brett, G. Black and U. Banach, Sens. Actuators B: Chem., 2011, 157(2), 329-352. https://doi.org/10.1016/j.snb.2011.04.070
  14. Y. Dobrovolsky, L. Leonova and A. Vakulenko, Solid State Ionics, 1996, 86-88, 1017-1021. https://doi.org/10.1016/0167-2738(96)00244-5
  15. G. Korotcenkov, S. D. Han and J. R. Stetter, Chem. Rev., 2009, 109(3), 1402-1433. https://doi.org/10.1021/cr800339k
  16. C. O. Park, J. W. Fergus, N. Miura, J. Park and A. Choi, Ionics, 2009, 15(3), 261-284. https://doi.org/10.1007/s11581-008-0300-6
  17. P. Pasierb and M. Rekas, J. Solid State Electrochem., 2009, 13(1), 3-25. https://doi.org/10.1007/s10008-008-0556-9
  18. J. F. M. Oudenhoven, W. Knoben and R. van Schaijk, Procedia Engineering, 2015, 120, 983-986. https://doi.org/10.1016/j.proeng.2015.08.636
  19. W.-K. Shin, J. Cho, A. G. Kannan, Y.-S. Lee and D.-W. Kim, Sci. Rep., 2016, 6, 26332. https://doi.org/10.1038/srep26332
  20. D.-W. Kim, J.-M. Ko and J.-H. Chun, J. Power Sources, 2001, 93(1-2), 151-155. https://doi.org/10.1016/S0378-7753(00)00560-7
  21. R. Miao, B. Liu, Z. Zhu, Y. Liu, J. Li, X. Wang and Q. Li, J. Power Sources, 2008, 184(2), 420-426. https://doi.org/10.1016/j.jpowsour.2008.03.045
  22. M. Li, X. Wang, Y. Wang, B. Chen, Y. Wu and R. Holze, RSC Adv., 2015, 5(65), 52382-52387. https://doi.org/10.1039/C5RA07182H
  23. E. Jayanthi, N. Murugesan, A. S. Suneesh, C. Ramesh and S. anthonysamy, J. Electrochem. Sci., 2017, 164(8), H5210-H5217. https://doi.org/10.1149/2.0331708jes
  24. Y.-S. Lee, J. H. Lee, J.-A. Choi, W. Y. Yoon and D.-W. Kim, Adv. Funct. Mater., 2013, 23(8), 1019-1027. https://doi.org/10.1002/adfm.201200692
  25. W-.K. Shin, Y.-S. Lee and D.-W. Kim, J. Mater. Chem. A, 2014, 2(19), 6863-6869. https://doi.org/10.1039/C3TA14558A
  26. J. Lee, N. Jackel, D. Kim, M. Widmaier, S. Sathyamoorthi, P. Srimuk, C. Kim, S. Fleischmann, M. Zeiger and V. Presser, Electrochim. Acta, 2016, 222, 1800-1805. https://doi.org/10.1016/j.electacta.2016.11.148
  27. M. Sakthivel and W. Weppner, Sens. Actuators B, 2006, 113(2), 998-1004. https://doi.org/10.1016/j.snb.2005.04.036
  28. L. Leonova, L. Shmygleva, A. Ukshe, A. Levchenko, A. Chub and Y. Dobrovolsky, Sens. Actuators B: Chem., 2016, 230, 470-476. https://doi.org/10.1016/j.snb.2016.02.083
  29. K. S. Kim and G. S. Chung, Sens. Actuators B: Chem., 2011, 157(2), 482-487. https://doi.org/10.1016/j.snb.2011.05.004
  30. A. Sanger, A. Kumar, A. Kumar and R. Chandra, Sens. Actuators B: Chem., 2016, 234, 8-14. https://doi.org/10.1016/j.snb.2016.04.152