Browse > Article
http://dx.doi.org/10.33961/jecst.2019.03405

Quasi-Solid-State Hybrid Electrolytes for Electrochemical Hydrogen Gas Sensor  

Kim, Sang-Hyung (Department of Chemical Engineering, Hanyang University)
Han, Dong-Kwan (Department of Chemical Engineering, Hanyang University)
Hong, SeungBo (Department of Chemical Engineering, Hanyang University)
Jeong, Bo Ra (Department of Chemical Engineering, Hanyang University)
Park, Bok-Seong (Engineering & Technology, Sin Myung ENTEC Co., Ltd.)
Han, Sang-Do (R&D Center, ShinWoo Electronics Co., Ltd.)
Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.3, 2019 , pp. 294-301 More about this Journal
Abstract
The quasi-solid-state hybrid electrolytes were synthesized by chemical cross-linking reaction of methacrylate-functionalized $SiO_2$ ($MA-SiO_2$) and tetra (ethylene glycol) diacrylate in aqueous electrolyte. A quasi-solid-state electrolyte synthesized by 6 wt.% $MA-SiO_2$ exhibited a high ionic conductivity of $177mS\;cm^{-1}$ at room temperature. The electrochemical $H_2$ sensor assembled with quasi-solid-state electrolyte showed relatively fast response and high sensitivity for hydrogen gas at ambient temperature, and exhibited better durability and stability than the liquid electrolyte-based sensor. The simple construction of the sensor and its sensing characteristics make the quasi-solid-state hydrogen sensor promising for practical application.
Keywords
Quasi-Solid-State Electrolyte; Hybrid Electrolyte; Electrochemical Sensor; Hydrogen Sensor; Ionic Conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Leonova, L. Shmygleva, A. Ukshe, A. Levchenko, A. Chub and Y. Dobrovolsky, Sens. Actuators B: Chem., 2016, 230, 470-476.   DOI
2 K. S. Kim and G. S. Chung, Sens. Actuators B: Chem., 2011, 157(2), 482-487.   DOI
3 A. Sanger, A. Kumar, A. Kumar and R. Chandra, Sens. Actuators B: Chem., 2016, 234, 8-14.   DOI
4 M. Inci and O. Turksoy, J. Cleaner Production, 2019, 213, 1353-1370.   DOI
5 R. Thimmappa, S. Shafi, S. Freunberger and M.O. Thotiyl, Int. J. Hydrogen Energy, 2016, 41(47), 22305-22315.   DOI
6 T. Sadhasivam, K. Dhanabalan, S.-H. Roh, T.-H. Kim, K.-W. Park, S. Jung, M. D. Kurkuri, H.-Y. Jung, Int J Hydrogen Energy, 2017, 42(7), 4415-4433.   DOI
7 H.-Y. Park, T.-Y. Jeon, K.-S. Lee, S. J. Yoo, Y.-E. Sung and J. H. Jang, J. Electrochem. Sci. Technol., 2016, 7(4), 269-276.   DOI
8 B. H. Weiller, J. D. Barrie, K. A. Aitchison and P. D. Chaffee, Mater. Res. Soc. Symp. Proc. 1994, 360, 535-540.   DOI
9 H. Han, S. Baik, B. Xu, J. Seo, S. Lee, S. Shin, J. Lee, J. H. Koo, Y. Mei, C. Pang and T. Lee, Adv. Funct. Mater., 2017, 27, 1701618.   DOI
10 M. Shi and F. C. Anson, J. Electroanal. Chem., 1996, 415(1-2), 41-46.   DOI
11 B. Limoges, C. Degrand and P. Brossier, J. Electroanal. Chem., 1996, 402(1-2), 175-187.   DOI
12 F. H. Garzon, R. Mukundan and E. L. Brosha, Solid State Ionics, 2000, 136-137, 633-638.   DOI
13 S. Akbar and W. Weppner, J Mater. Sci., 2003, 38(23), 4639-4660.   DOI
14 J. Zosel, G. Schiffel, F. Gerlach, K. Ahlborn, U. Sasum, V. Vashock and U. Guth, Solid State Ionics, 2006, 177(26-32), 2301-2304.   DOI
15 G. Korotcenkov, S. D. Han and J. R. Stetter, Chem. Rev., 2009, 109(3), 1402-1433.   DOI
16 T. Hubert, L. Boon-Brett, G. Black and U. Banach, Sens. Actuators B: Chem., 2011, 157(2), 329-352.   DOI
17 Y. Dobrovolsky, L. Leonova and A. Vakulenko, Solid State Ionics, 1996, 86-88, 1017-1021.   DOI
18 P. Pasierb and M. Rekas, J. Solid State Electrochem., 2009, 13(1), 3-25.   DOI
19 G. Korotcenkov, S. D. Han and J. R. Stetter, Chem. Rev., 2009, 109(3), 1402-1433.   DOI
20 C. O. Park, J. W. Fergus, N. Miura, J. Park and A. Choi, Ionics, 2009, 15(3), 261-284.   DOI
21 J. F. M. Oudenhoven, W. Knoben and R. van Schaijk, Procedia Engineering, 2015, 120, 983-986.   DOI
22 W.-K. Shin, J. Cho, A. G. Kannan, Y.-S. Lee and D.-W. Kim, Sci. Rep., 2016, 6, 26332.   DOI
23 D.-W. Kim, J.-M. Ko and J.-H. Chun, J. Power Sources, 2001, 93(1-2), 151-155.   DOI
24 R. Miao, B. Liu, Z. Zhu, Y. Liu, J. Li, X. Wang and Q. Li, J. Power Sources, 2008, 184(2), 420-426.   DOI
25 M. Li, X. Wang, Y. Wang, B. Chen, Y. Wu and R. Holze, RSC Adv., 2015, 5(65), 52382-52387.   DOI
26 E. Jayanthi, N. Murugesan, A. S. Suneesh, C. Ramesh and S. anthonysamy, J. Electrochem. Sci., 2017, 164(8), H5210-H5217.   DOI
27 Y.-S. Lee, J. H. Lee, J.-A. Choi, W. Y. Yoon and D.-W. Kim, Adv. Funct. Mater., 2013, 23(8), 1019-1027.   DOI
28 W-.K. Shin, Y.-S. Lee and D.-W. Kim, J. Mater. Chem. A, 2014, 2(19), 6863-6869.   DOI
29 J. Lee, N. Jackel, D. Kim, M. Widmaier, S. Sathyamoorthi, P. Srimuk, C. Kim, S. Fleischmann, M. Zeiger and V. Presser, Electrochim. Acta, 2016, 222, 1800-1805.   DOI
30 M. Sakthivel and W. Weppner, Sens. Actuators B, 2006, 113(2), 998-1004.   DOI