• Title/Summary/Keyword: Gas target

Search Result 851, Processing Time 0.046 seconds

A Study on Counter Strategy of GHG·Energy Target Management System for Construction Firm (건설회사의 온실가스·에너지 목표관리제 대응전략 분석에 관한 연구)

  • Roh, Seung-Jun;Tae, Sung-Ho;Kim, Tae-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.135-136
    • /
    • 2012
  • The purpose of this study is to analysis of counter strategy of greenhouse gas·energy target management system for the construction firm. For this purpose, the greenhouse gas·energy target management system of other industries was investigated. The selection possibility that is construction firm to be managed company was analyzed. In addition, status of counter strategy on the greenhouse gas·energy target management system were investigated and analyzed about 5 domestic major construction firm via questionnaire and interview. As a result, the counter strategy by organization and annual for the greenhouse gas·energy target management system was drawn.

  • PDF

A Study on Establishing Target Reliability Levels for Flammable Gas Transmission Pipelines (가연성가스 수송배관에 대한 목표 신뢰도 수준 설정에 관한 연구)

  • Lee, Jin-Han;Jo, Young-Do;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.52-58
    • /
    • 2018
  • In reliability based design and assessment (RBDA) methodology, reliability targets are used to ensure that safety levels are met relevant limit states in the stage of design and maintenance. The target reliability for flammable gas pipelines have not been developed yet in Korea. Instead of the reliability targets, the tolerable criteria for risk measures such as societal and individual risk have been applied in pipeline risk management. This paper introduces the procedures to develop the target reliability using tolerable risk criteria for societal and individual risk which can be enforced for high pressure natural gas pipelines in quantitative risk assessment. In addition, we propose the target reliability for natural gas and hydrogen gas transmission pipelines by the procedures.

A Study of Thermal Performances for Micro Gas Sensor (마이크로 가스센서의 열적 성능에 관한 연구)

  • Joo Young-Cheol;Kim Chang-Kyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.531-537
    • /
    • 2006
  • A lever type $NO_2$ micro gas sensor was fabricated by MEMS technology. In order to heat up the gas sensing material to a target temperature, a micro heater was built on the gas sensor. The sensing material laid on the heater and electrodes and did not contact with the silicon base to minimize the heat loss to the silicon base. The electric power to heat up the gas sensor to a target temperature was measured. The temperature distribution of micro gas sensor was analyzed by a CFD program. The predicted electric power of micro heater to heat up the sensing material to the target temperature showed a good agreement with the measured data. The design of micro gas sensor could be modified to show more uniform temperature distribution and to consume less electric power by optimizing the layout of micro heater and electrodes.

DEVELOPMENT OF A METHOD FOR CONTROLLING GAS CONCENTRATION FOR USE IN C.A EXPERIMENTS

  • Yun, H.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.662-669
    • /
    • 2000
  • Based on the viscous flow characteristics of gas through capillary tube, a simple and low cost system was developed for controlling gas concentration for use in C.A experiments. The gas flow rate through capillary tube had a linear relationship with pressure, $(length)^{-1}$ and $(radius)^4$ of capillary tube, which agreed well with Hagen-Poiseuille's law. The developed system could control the gas concentration in storage chamber within ${\pm}0.3%$ deviation compared to the preset concentration. The required time for producing target gas concentration in storage chamber was exactly predicted by the model used in this study, and it required much longer time than the calculated time which divided the volume of chamber by flow rate. Therefore, for producing target gas concentration as quickly as possible, it needs to supply higher flow rate of gas during the initial stage of experiment when gas concentration in storage chamber has not reached at target value. It appeared that the developed system was very useful for C.A experiments. Because one could decide a desired flow rate by the prediction model, control flow rate freely and easily by changing pressure in the pressure-regulating chamber and the accuracy was high.

  • PDF

Application of Target Reliability Levels for Maintenance of Domestic Natural Gas Pipelines (국내 천연가스배관 유지관리를 위한 목표신뢰도 적용사례)

  • Lee, Jin-Han;Kim, Jeong-Hwan;Jo, Young-Do;Kim, Lae Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • Reliability based design and assessment (RBDA) methodology is one of the newest directions of natural gas pipeline design method. Reliability targets are used to ensure that safety levels are met relevant limit states in the stage of design and maintenance. The target reliability for ultimate limit states such as large leak and rupture were developed using tolerable risk criteria for individual and societal risk. This paper shows the reliability target can be met through the implementation of periodic maintenance measures during the life cycle of the pipelines. The case study involves the calculation of the failure probability due to equipment impact, the calculation of the failure probability due to corrosion, and the estimation the re-inspection interval for domestic natural gas transmission pipelines.

Application of C-11 Gas Target Using Finite Element Method (FEM을 이용한 C-11 기체표적의 성능평가)

  • Hur M.G.;Oh H.S.;Jung H.Y.;Park S.P.;Yang S.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1699-1704
    • /
    • 2005
  • In this research the energy degrader, which is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the Nastran mediocrity finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined, and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

  • PDF

Preparation of $YBa_2Cu_3O_{7-y}$ Superconducting Thin Films by on-axis Sputtering (on-axis 스퍼터링 방법에 의한 $YBa_2Cu_3O_{7-y}$ 초전도 박막 제조)

  • 한재원;박정래;최무용
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.172-176
    • /
    • 1995
  • $YBa_2Cu_3O_{7-y}$ thin films have been prepared on MgO(100)substrates placed on-axis to the target by dc magnetron sputtering in a variety of oxygen/argon gas pressures with different substrate-target distances. We found that films with the c-axis perpendicular to the substrate deposited in an optimally high gas pressure with on-axis substrate-target configuration do. Increasing the substrate-target distance was found to be effetive in reducing the resputtering effect and enhancing superconductivity of films, but not so much $\alpha$-and c-axis growth of YMCO films on MgO substrates. Dependences of the Tc, the rationj of resistances at 300K and 100K, and the X-ray diffraction pattern on the gas pressure and the substrate target distance are described.

  • PDF

The Evaluation of Performance of C-11 Radio Isotope Gas Target using Finite Element Method (FEM을 이용한 C-11 동위원소 기체표적의 성능평가)

  • Oh, Hwan-Sup;Hur, Min-Goo;Park, Sang-Pil;Jung, Hyo-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2006
  • The energy degrader is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

Scenario Analysis of Natural Gas Demand for Electricity Generation in Korea (전력수급기본계획의 불확실성과 CO2 배출 목표를 고려한 발전용 천연가스 장기전망과 대책)

  • Park, Jong-Bae;Roh, Jea Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1503-1510
    • /
    • 2014
  • This study organizes scenarios on the power supply plans and electricity load forecasts considering their uncertainties and estimates natural gas quantity for electricity generation, total electricity supply cost and air pollutant emission of each scenario. Also the analysis is performed to check the properness of government's natural gas demand forecast and the possibility of achieving the government's CO2 emission target with the current plan and other scenarios. In result, no scenario satisfies the government's CO2 emission target and the natural gas demand could be doubled to the government's forecast. As under-forecast of natural gas demand has caused the increased natural gas procurement cost, it is required to consider uncertainties of power plant construction plan and electricity demand forecast in forecasting the natural gas demand. In addition, it is found that CO2 emission target could be achieved by enlarging natural gas use and demand-side management without big increase of total costs.

Analysis of Potential Reductions of Greenhouse Gas Emissions on the College Campus through the Energy Saving Action Programs

  • Woo, Jeongho;Choi, Kyoung-Sik
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.191-197
    • /
    • 2013
  • Republic of Korea announced the reduction target to be around 30% of business as usual greenhouse gas emissions by 2020. College campuses were ranked at the 5th of high energy consumption areas in the building sectors. Target management scheme was designed to set greenhouse gas emissions target including several college campuses. Previous studies showed the amount of greenhouse gas emissions with several assumptions such as the applications of renewable energy systems and light emitting diode lamps, etc. Long-range Energy Alternatives Planning model was utilized to simulate future greenhouse gas emissions. This study sets standard model labs for energy saving action programs by applying guidance studies. It has been deduced that energy saving action programs was responsible for reducing 949.5 kWh for each standard model lab and the total reduction of all 59 model labs in the Engineering College building has been calculated to 56,020.5 kWh. The objective of the study is to provide guidelines on standard model laboratory for greenhouse gas emissions reduction on the campus.