• Title/Summary/Keyword: Gas sensor

Search Result 1,615, Processing Time 0.03 seconds

Hydrogen Sulfide Sensing Characteristics Depending on Electrolytes of Pt/CNT Liquid Electrochemical Sensors (Pt/CNT 전극 기반 전기화학식 센서의 전해질에 따른 황화수소 감지 특성)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Soobeen baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.194-198
    • /
    • 2023
  • With the recent development of industrial technology, the problem of odor due to leakage of toxic gas discharged from industrial complexes is gradually increasing. Among them, hydrogen sulfide is a colorless representative odorous substance that can cause pain through irritation of the mucous membranes of the eyes and respiratory tract, and is a gas that can cause central nervous system paralysis and suffocation when exposed to high concentrations. Therefore, in order to improve the odor problem, research on a gas sensor capable of quickly and reliably detecting a leak of hydrogen sulfide is being actively conducted. A lot of research has been done on the existing metal oxide-based hydrogen sulfide gas sensor, but it has the disadvantage of requiring low selectivity and high temperature operating conditions. Therefore, in this study, a Pt/CNT-based electrochemical hydrogen sulfide gas sensor capable of detecting at low temperatures with high selectivity for hydrogen sulfide was developed. A working electrode capable of selectively detecting only hydrogen sulfide was fabricated by synthesizing Pt nanoparticles as a catalyst on functionalized CNT and applied to an electrochemical hydrogen sulfide gas sensor. It was confirmed that the manufactured Pt/CNT-based electrochemical hydrogen sulfide gas sensor has a current change of up to 100uA for hydrogen sulfide, and the both response time and recovery time were within 15 seconds.

Fabrication of High-Performance Colorimetric Fiber-Type Sensors for Hydrogen Sulfide Detection (황화수소 가스 감지를 위한 고성능 변색성 섬유형 센서의 제작 및 개발)

  • Jeong, Dong Hyuk;Maeng, Bohee;Lee, Junyeop;Cho, Sung Been;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.168-174
    • /
    • 2022
  • Hydrogen sulfide(H2S) gas is a high-risk gas that can cause suffocation or death in severe cases, depending on the concentration of exposure. Various studies to detect this gas are still in progress. In this study, we demonstrate a colorimetric sensor that can detect H2S gas using its direct color change. The proposed nanofiber sensor containing a dye material named Lead(II) acetate, which changes its color according to H2S gas reaction, is fabricated by electrospinning. The performance of this sensor is evaluated by measuring RGB changes, ΔE value, and gas selectivity. It has a ΔE value of 5.75 × 10-3 ΔE/s·ppm, showing improved sensitivity up to 1.4 times that of the existing H2S color change detection sensor, which is a result of the large surface area of the nanofibers. The selectivity for H2S gas is confirmed to be an excellent value of almost 70 %.

Thermal Analysis of Highly Integrated Gas Sensor Array with Advanced Thermal Stability Properties (안정성이 개선된 고집적 가스센서 어레이 열해석)

  • 정완영;임준우;이덕동
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.17-23
    • /
    • 2003
  • A sensor array (3${\times}$5$\textrm{mm}^2$ in diaphragm dimension) of 12 sensing clements with different operating temperatures was optimized with respect to thermal operation. This sensor array with single heater on a glass diaphragm over back-etched silicon bulk realizes a novel concept of a sensor array: an array of sensor clements operated at different temperatures can yield more information than single measurement. The proposed micro sensor array could provide well-integrated array structure because it had only single heater at the center of the diaphragm and used the various sensing properties of two kinds of metal oxide layers with various operating temperatures.

Characterization of A Catalystic Gas Sensor for Measuring Heat Content of Natural Gas (천연가스의 열용량을 측정하기 위한 촉매가스센서의 특징)

  • Lee K. Y.;Maclay G. J.;Stetter J. R.
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.229-235
    • /
    • 1997
  • A low power (300 mW) catalytic bead combustible gas sensor is developed and utilized with a computer controlled sampling system for measuring heat content of natural gas. The heat content of gas is proportional to the change in the energy required to exposure to the sample of combustible gas. The heat content of natural gas samples ranging 36.30 - 39.88 MJ/$m^3$ is measured in the range of approximately $1\%$ error, which is comparable to its nominal heat content. Each gas has a slightly different curve of sensitivity vs. sensor temperature. Thus there Is no temperature at which all sensitivities are equal. In calibration process the choice of a optimum operating temperature is an important factor that influences the overall performance of the measurement system.

  • PDF

Gas sensor based on hydrogenated multilayer graphene

  • Park, Seong-Jin;Park, Min-Ji;Yu, Gyeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.273.1-273.1
    • /
    • 2016
  • Graphene exhibits a number of unique properties that make it an intriguing candidate for use in sensor. Here, we report graphene-based gas sensor. Graphene was grown using CVD. Then, the sensor was made using standard lithography techniques. The sensor conductance increased upon exposure to NH3, whereas it decreased upon NO2, suggesting that NH3 and NO2 might be discriminated using the graphene-based sensor. To improve the sensitivity, graphene was treated with hydrogen plasma. After hydrogen treatment, the electrical properties of graphene changed from ambipolar to p-type semiconductors. In addition, the sensor performance was improved probably due to an opening of bandgap.

  • PDF

Analysis of Gas Flow Behavior with Experiments for LPG releasing and 3D Mapping of Gas Sensor (LPG 누출 및 가스센서 3D Mapping을 통한 가스유동현상 분석)

  • Kim, Jeong Hwan;Lee, Min-Kyung;Kil, Seong-Hee;Lee, Jin-han;Jo, Young-do;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.45-55
    • /
    • 2017
  • Release and fire/explosion tests of flammable gas are extremely dangerous. Furthermore, it is difficult to select the site where the experiment can be performed. In these reasons, gas flow analysis(CFD) has been used as much as possible. However, with the opening of the Energy Safety Empirical Research Center in Yeongwol-gun, Gangwon-do in October 2016, it was possible to conduct releases and detection tests of small scale combustible gas as well as large scale / high pressure / ultra low temperature experiments. In this study, LPG leaked after the calibration and placement of the sensor, the sensor detected LPG and the data were visualized as a contour map. And the differences between the actual release(28s, max 3.7[m]) and the analysis were analyzed compared to the FLACS analyzed under the same conditions.

Room Temperature Hydrogen Gas Sensor using Pd/Carbon Nanotubes Buckypaper (팔라듐/탄소나노튜브 버키페이퍼를 이용한 상온감지 수소가스 센서)

  • Han, Maeum;Kim, Jae Keon;Kim, Yeongsam;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.394-398
    • /
    • 2020
  • In this paper, we report the sensing performance of H2 gas sensors composed of Pd/carbon nanotube (CNT) buckypaper at room temperature. The CNT buckypaper was made using a simple filtration process and subsequently deposited with Pd as the sensing material. The sensitivity of the sensor increased with respect to the gas concentration. To investigate the effect of Pd thickness, Pd layers of different thickness were deposited on the buckypaper, and the response of the sensor was evaluated. The proposed sensor exhibits excellent sensing properties with optimized Pd thickness at room temperature (25℃). Pd nanoparticles significantly impact the sensitivity and selectivity of the sensor because of the spillover effect. In addition, the sensor is highly suitable for bendable and wearable devices owing to its structural flexibility.

Methane Gas Sensing Properties of the Zinc Oxide Nanowhisker-derived Gas Sensor

  • Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.106-109
    • /
    • 2012
  • A low power methane gas sensor with microheater was fabricated by silicon bulk micromachining technology. In order to heat up the sensing layer to operating temperature, a platinum (Pt) micro heater was embedded in the gas sensor. The line width and gap of the microheater was 20 ${\mu}m$ and 4.5 ${\mu}m$, respectively. Zinc oxide (ZnO) nanowhisker arrays were grown on a sensor from a ZnO seed layer using a hydrothermal method. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growing ZnO nanowhiskers. Temperature distribution of the sensor was analyzed by infrared thermal camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high (64%) sensitivity was obtained even at as low a temperature as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$, and only 25 mW at $150^{\circ}C$.

Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

  • Nguyen, Minh Vuong;Hoang, Nhat Hieu;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • Gas sensor properties of $WO_3$ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of $WO_3$ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous $WO_3$ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, $NH_3$ and $H_2$ gases diluted in air were investigated in the temperature range of $100{\sim}340^{\circ}C$ The sensor exhibited low response to CO gas and quite high response to $NH_3$ and $H_2$ gases. The highest sensitivity was observed at $250^{\circ}C$ for $NH_3$ and $300^{\circ}C$ for $H_2$. The effect of the diameters of $WO_3$ nanowires on the sensor performance was also studied. The $WO_3$ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to $H_2$ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

  • PDF

세라믹 가스센서를 이용한 토양증기추출공정의 배출가스 모니터링 기법 연구

  • 양지원;조현정;이재영;곽무영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.250-252
    • /
    • 2002
  • The goals of environmental monitoring are to locate and quantify the significant contamination, estimate the fate and transport, estimate the potential exposure and risks to humans and the environment, and track the performance of various remedial technologies. In this study, ceramic gas sensor system is proposed to enhance the effectiveness of soil vapor extraction (SVE) process by monitoring the effluent gas. SVE is a technique that is widely used to remediate unsaturated soils contaminated with volatile organic contaminants. The sensor response for benzene, toluene, and xylene, the representative effluent gas compositions of SVE process, was evaluated using the proposed sensor system. As a result, it was verified that the response of sensor was increased or decreased very sensitively according to the change of the effluent gas concentration. Besides, the sensor could detect the difference over a wide range of concentration and it was more sensitive in order of xylene, toluene, and benzene. It is expected that this VOC analysis method results in field monitoring costs saying and appropriate immediate action for process control. More detailed experiments are being conducted in our research group.

  • PDF