Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.3.168

Fabrication of High-Performance Colorimetric Fiber-Type Sensors for Hydrogen Sulfide Detection  

Jeong, Dong Hyuk (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
Maeng, Bohee (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
Lee, Junyeop (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
Cho, Sung Been (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
An, Hee Kyung (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
Jung, Daewoong (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of Sensor Science and Technology / v.31, no.3, 2022 , pp. 168-174 More about this Journal
Abstract
Hydrogen sulfide(H2S) gas is a high-risk gas that can cause suffocation or death in severe cases, depending on the concentration of exposure. Various studies to detect this gas are still in progress. In this study, we demonstrate a colorimetric sensor that can detect H2S gas using its direct color change. The proposed nanofiber sensor containing a dye material named Lead(II) acetate, which changes its color according to H2S gas reaction, is fabricated by electrospinning. The performance of this sensor is evaluated by measuring RGB changes, ΔE value, and gas selectivity. It has a ΔE value of 5.75 × 10-3 ΔE/s·ppm, showing improved sensitivity up to 1.4 times that of the existing H2S color change detection sensor, which is a result of the large surface area of the nanofibers. The selectivity for H2S gas is confirmed to be an excellent value of almost 70 %.
Keywords
Gas sensors; Colorimetric sensor; $H_2S$ sensor; Lead(II) acetate; Electrospinning;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. A. Chapman, Application of nonwovens in technical textiles, Elsevier, New York, pp. 1-203, 2010.
2 J. W. Lee, D. S. So, and H. S. Su, "Nanofibers: Preparations and Applications", KIC NEWS, Vol. 13. No. 1, pp. 32-50, 2010.
3 S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, "Electrospun nanofiber scaffolds: engineering soft tissues", Biomed. Mater., Vol. 3. No. 3, p. 034002, 2008.   DOI
4 K. Koenig, K. Beukenberg, F. Langensiepen, and G. Seide, "A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers", J. Biomed. Mater. Res., Vol. 23. No. 1, pp. 1-12, 2019.   DOI
5 W. S. Mokrzycki and M. Tatol, "Color difference Delta E -A survey", Mach. Graph. Vis., Vol. 20. No. 4, pp. 383-411, 2011.
6 D. A. Mattorano, "Respiratory protection on offshore drilling rigs", Appl. Occup. Environ. Hyg., Vol. 14. No. 3, pp. 141-148, 1999.   DOI
7 T. L. Guidotti, "Hydrogen sulphide", Occup. Med., Vol. 45. No. 5, pp. 367-371, 1996.   DOI
8 D. Li, L. Qin, P. Zhao, Y. Zhang, D. Liu, B. Kang, Y. Wang, H. Song, T. Zhang, and G. Lu, "Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection", Sens. Actuators B, Vol. 254, pp. 834-841, 2018.   DOI
9 Z. Li, S. Yan, S. Zhang, J. Wang, W. Shen, Z. Wang, and Y. Q. Fu, "Ultra-sensitive UV and H2S dual functional sensors based on porous In2O3 nanoparticles operated at room temperature", J. Alloy. Compd., Vol. 770, pp. 721-731, 2019.   DOI
10 P. L. Quang, N. D. Cuong, T. T. Hoa, H. T. Long, C. M. Hung, D. T. T. Le, and N. V. Hieu, "Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance", Sens. Actuators B, Vol. 270, pp. 158-166, 2018.   DOI
11 B. N. Choi, J. H. Yang, Y. S. Kim, and C. H. Chung, "Effect of morphological change of copper-oxide fillers on the performance of solid polymer electrolytes for lithium-metal polymer batteries", RSC Adv., Vol. 9, No. 38, pp. 21760-21770, 2019.   DOI
12 R. Sokolovskij, J. Zhang, E. Lervolino, C. Zhao, F. Santagata, F. Wang, H. Yu, P. M. Sarro, and G. Q. Zhang, "Hydrogen sulfide detection properties of Pt-gated AlGaN/GaN HEMT-sensor", Sens. Actuators B, Vol. 274, pp. 636-644, 2018.   DOI
13 J. Y. Lee, N. G Do, D. H. Jeong, D. G. Jung, H. K. An, S. H. Kong, and D. W. Jung, "Polyester (PET) Fabric dyed with Lead (II) acetate-based Colorimetric Sensor for Detecting Hydrogen Sulfide (H2S)", J. Sens. Sci. Technol., Vol. 29. No. 5, pp. 360-364, 2020.   DOI
14 D. Haydt, H2S DETECTION AND DETERMINATION, Tech. Rep., Houston, Galvanic Applied Sciences, pp. 1-34, 2000.
15 F. I. M. Ali, F. Awad, Y. E. Greish and S. T. Mahmoud, "Hydrogen Sulfide (H2S) Gas Sensor: A Review", IEEE J. Sens., Vol. 19. No. 7, pp. 2394-2407, 2019.   DOI
16 M. A. Mohamed, S. A. Halaway, and M. M. Ebrahim, "Non-isothermal kinetic and thermodynamic study of the decomposition of lead acetate trihydrate", Ther. Act., Vol. 236, pp. 249-262, 1994.   DOI
17 H. Huang, P. Xu, D. Zheng, C. Chen, and X. Li, "Sulfuration-desulfuration reaction sensing-effect of intrinsic ZnO nanowires for high-performance H2S detection", J. Mater, Chem. A., Vol. 3, No. 12, pp. 6330-6339, 2015.   DOI
18 M. A. H. Khan, M. V. Rao, and Q. Li, "Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S", Sensors, Vol. 19. No. 4, pp. 905(1)-905(39), 2019.   DOI
19 N. S. A. Eom, H. B. Cho, Y. S. Song, G. M. Go, J. M. Lee, and Y. H. Choa, "Room-temperature H2S gas sensing by selectively synthesized Cux(x=1, 2)O:SnO2 thin film nanocomposites with oblique & vertically assembled SnO2 ceramic nanorods", Sens. Actuators B, Vol. 273, pp. 1054-1061, 2018.   DOI
20 A. Stanoiu, C. E. Simion, J. M. C. Moreno, P. O. siceanu, M. Florea, V. S. Teodorescu, and S. Somacescu, "Sensors based on mesoporous SnO2-CuWO4 with high selective sensitivity to H2S at low operating temperature", J. Hazard. Mater., Vol. 331, pp. 150-160, 2017.   DOI