Browse > Article
http://dx.doi.org/10.4313/TEEM.2012.13.2.106

Methane Gas Sensing Properties of the Zinc Oxide Nanowhisker-derived Gas Sensor  

Moon, Hyung-Sin (Bump Engineering Team, DDI Engineering Group, Nepes Corporation)
Kim, Sung-Eun (MEMS/NANO Fabrication Center, Busan Techno-Park)
Choi, Woo-Chang (MEMS/NANO Fabrication Center, Busan Techno-Park)
Publication Information
Transactions on Electrical and Electronic Materials / v.13, no.2, 2012 , pp. 106-109 More about this Journal
Abstract
A low power methane gas sensor with microheater was fabricated by silicon bulk micromachining technology. In order to heat up the sensing layer to operating temperature, a platinum (Pt) micro heater was embedded in the gas sensor. The line width and gap of the microheater was 20 ${\mu}m$ and 4.5 ${\mu}m$, respectively. Zinc oxide (ZnO) nanowhisker arrays were grown on a sensor from a ZnO seed layer using a hydrothermal method. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growing ZnO nanowhiskers. Temperature distribution of the sensor was analyzed by infrared thermal camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high (64%) sensitivity was obtained even at as low a temperature as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$, and only 25 mW at $150^{\circ}C$.
Keywords
Gas sensor; Microheater; Zinc oxide; Nanowhiskers; Methane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Santra, P. K. Guha, S. Z. Ali, P. Hiralal, H. E. Unalan, J. A. Convington, G. A. J. Amaratunga, W. I. Milne, J. W. Gardner, and F. Udrea, Sensor. Actuat. B 146, 559 (2010) [DOI: 10.1016/ j.snb.2010.01.009].   DOI   ScienceOn
2 L. V. Thong, N. D. Hoa, D. T. Thanh Le, D. T. Viet, P. D. Tam, A. T. Le, and N. V. Hieu, Sensor. Actuat. B 146, 361 (2010) [DOI: 10.1016/j.snb.2010.02.054].   DOI   ScienceOn
3 K. Chatterjee, S. Chatterjee, A. Banerjee, M. Raut, N. C. Pal, A. Sen, and H. S. Maiti, Materials Chemistry and Physics 81, 33 (2003) [DOI: 10.1016/S0254-0584(03)00145-7].   DOI   ScienceOn
4 D. Kohl, J. Phys. D: Appl. Phys. 34, 125 (2001) [DOI: 10.1088/0022-3727/34/19/201].
5 J. Puigcorbe, D. Vogel, B. Michel, A. Vila, I. Gracia, C. Cane and J. R. Morante, J. Micromech. Microeng. 13, 548 (2003) [DOI: 10.1088/0960-1317/13/5/304].   DOI   ScienceOn
6 E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2002) [DOI: 10.1063/1.1504867].   DOI   ScienceOn
7 Z. L. Wang, Adv. Mater. 15, 432 (2003) [DOI: 0935-9648/03/0503- 0433].   DOI   ScienceOn
8 C. M. Carney, S. Yoo, and S. A. Akbar, Sensor. Actuat. B 108, 29 (2005) [DOI: 10.1016/j.snb.2004.11.058].   DOI   ScienceOn
9 N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surface Science 86, 335 (1979) [DOI: 10.1016/0039-6028(79)90411-4].   DOI   ScienceOn
10 Q. Schiermeier, Nature 439, 128 (2006) [DOI: 10.1038/439128a].   DOI   ScienceOn
11 K. D. Mitzner, J. Sternhagen, and D. W. Galipeau, Sensor. Actuat. B 93, 92 (2003) [DOI: 10.1016/S0925-4005(03)00244-2].   DOI   ScienceOn
12 J. S. Suehle, R. E. Cavicchi, M. Gaitan, and S. Semancik, IEEE Electron Device Letters 14, 118 (1993) [DOI: 10.1109/55.215130].   DOI   ScienceOn
13 C. Lu, Z. Chen, and V. Singh, Sensor. Actuat. B 146, 145 (2010) [DOI: 10.1016/j.snb.2010.02.034].   DOI   ScienceOn