DOI QR코드

DOI QR Code

황화수소 가스 감지를 위한 고성능 변색성 섬유형 센서의 제작 및 개발

Fabrication of High-Performance Colorimetric Fiber-Type Sensors for Hydrogen Sulfide Detection

  • 정동혁 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 맹보희 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 이준엽 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 조성빈 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 안희경 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 정대웅 (한국생산기술연구원 첨단메카트로닉스연구그룹)
  • Jeong, Dong Hyuk (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Maeng, Bohee (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Junyeop (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Cho, Sung Been (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • An, Hee Kyung (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Jung, Daewoong (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2022.05.20
  • 심사 : 2022.05.28
  • 발행 : 2022.05.31

초록

Hydrogen sulfide(H2S) gas is a high-risk gas that can cause suffocation or death in severe cases, depending on the concentration of exposure. Various studies to detect this gas are still in progress. In this study, we demonstrate a colorimetric sensor that can detect H2S gas using its direct color change. The proposed nanofiber sensor containing a dye material named Lead(II) acetate, which changes its color according to H2S gas reaction, is fabricated by electrospinning. The performance of this sensor is evaluated by measuring RGB changes, ΔE value, and gas selectivity. It has a ΔE value of 5.75 × 10-3 ΔE/s·ppm, showing improved sensitivity up to 1.4 times that of the existing H2S color change detection sensor, which is a result of the large surface area of the nanofibers. The selectivity for H2S gas is confirmed to be an excellent value of almost 70 %.

키워드

과제정보

본 논문은 한국생산기술연구원 기본사업 "유해물질 감지 및 위험상황 방지를 위한 발색/발광 섬유제품 개발 (Kitech EH-22-0004)" 지원과 대한민국 정부(산업통상자원부 및 방위 사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비 지원으로 수행되었습니다. (과제번호 21-SF-BR-05)

참고문헌

  1. D. A. Mattorano, "Respiratory protection on offshore drilling rigs", Appl. Occup. Environ. Hyg., Vol. 14. No. 3, pp. 141-148, 1999. https://doi.org/10.1080/104732299303052
  2. T. L. Guidotti, "Hydrogen sulphide", Occup. Med., Vol. 45. No. 5, pp. 367-371, 1996. https://doi.org/10.1093/occmed/46.5.367
  3. R. Sokolovskij, J. Zhang, E. Lervolino, C. Zhao, F. Santagata, F. Wang, H. Yu, P. M. Sarro, and G. Q. Zhang, "Hydrogen sulfide detection properties of Pt-gated AlGaN/GaN HEMT-sensor", Sens. Actuators B, Vol. 274, pp. 636-644, 2018. https://doi.org/10.1016/j.snb.2018.08.015
  4. D. Li, L. Qin, P. Zhao, Y. Zhang, D. Liu, B. Kang, Y. Wang, H. Song, T. Zhang, and G. Lu, "Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection", Sens. Actuators B, Vol. 254, pp. 834-841, 2018. https://doi.org/10.1016/j.snb.2017.06.110
  5. Z. Li, S. Yan, S. Zhang, J. Wang, W. Shen, Z. Wang, and Y. Q. Fu, "Ultra-sensitive UV and H2S dual functional sensors based on porous In2O3 nanoparticles operated at room temperature", J. Alloy. Compd., Vol. 770, pp. 721-731, 2019. https://doi.org/10.1016/j.jallcom.2018.08.188
  6. H. Huang, P. Xu, D. Zheng, C. Chen, and X. Li, "Sulfuration-desulfuration reaction sensing-effect of intrinsic ZnO nanowires for high-performance H2S detection", J. Mater, Chem. A., Vol. 3, No. 12, pp. 6330-6339, 2015. https://doi.org/10.1039/C4TA05963H
  7. N. S. A. Eom, H. B. Cho, Y. S. Song, G. M. Go, J. M. Lee, and Y. H. Choa, "Room-temperature H2S gas sensing by selectively synthesized Cux(x=1, 2)O:SnO2 thin film nanocomposites with oblique & vertically assembled SnO2 ceramic nanorods", Sens. Actuators B, Vol. 273, pp. 1054-1061, 2018. https://doi.org/10.1016/j.snb.2018.06.098
  8. P. L. Quang, N. D. Cuong, T. T. Hoa, H. T. Long, C. M. Hung, D. T. T. Le, and N. V. Hieu, "Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance", Sens. Actuators B, Vol. 270, pp. 158-166, 2018. https://doi.org/10.1016/j.snb.2018.05.026
  9. A. Stanoiu, C. E. Simion, J. M. C. Moreno, P. O. siceanu, M. Florea, V. S. Teodorescu, and S. Somacescu, "Sensors based on mesoporous SnO2-CuWO4 with high selective sensitivity to H2S at low operating temperature", J. Hazard. Mater., Vol. 331, pp. 150-160, 2017. https://doi.org/10.1016/j.jhazmat.2017.02.038
  10. M. A. H. Khan, M. V. Rao, and Q. Li, "Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S", Sensors, Vol. 19. No. 4, pp. 905(1)-905(39), 2019. https://doi.org/10.3390/s19040905
  11. D. Haydt, H2S DETECTION AND DETERMINATION, Tech. Rep., Houston, Galvanic Applied Sciences, pp. 1-34, 2000.
  12. F. I. M. Ali, F. Awad, Y. E. Greish and S. T. Mahmoud, "Hydrogen Sulfide (H2S) Gas Sensor: A Review", IEEE J. Sens., Vol. 19. No. 7, pp. 2394-2407, 2019. https://doi.org/10.1109/JSEN.2018.2886131
  13. M. A. Mohamed, S. A. Halaway, and M. M. Ebrahim, "Non-isothermal kinetic and thermodynamic study of the decomposition of lead acetate trihydrate", Ther. Act., Vol. 236, pp. 249-262, 1994. https://doi.org/10.1016/0040-6031(94)80273-4
  14. J. Y. Lee, N. G Do, D. H. Jeong, D. G. Jung, H. K. An, S. H. Kong, and D. W. Jung, "Polyester (PET) Fabric dyed with Lead (II) acetate-based Colorimetric Sensor for Detecting Hydrogen Sulfide (H2S)", J. Sens. Sci. Technol., Vol. 29. No. 5, pp. 360-364, 2020. https://doi.org/10.46670/JSST.2020.29.5.360
  15. R. A. Chapman, Application of nonwovens in technical textiles, Elsevier, New York, pp. 1-203, 2010.
  16. J. W. Lee, D. S. So, and H. S. Su, "Nanofibers: Preparations and Applications", KIC NEWS, Vol. 13. No. 1, pp. 32-50, 2010.
  17. S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, "Electrospun nanofiber scaffolds: engineering soft tissues", Biomed. Mater., Vol. 3. No. 3, p. 034002, 2008. https://doi.org/10.1088/1748-6041/3/3/034002
  18. K. Koenig, K. Beukenberg, F. Langensiepen, and G. Seide, "A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers", J. Biomed. Mater. Res., Vol. 23. No. 1, pp. 1-12, 2019. https://doi.org/10.1002/jbm.820230102
  19. W. S. Mokrzycki and M. Tatol, "Color difference Delta E -A survey", Mach. Graph. Vis., Vol. 20. No. 4, pp. 383-411, 2011.
  20. B. N. Choi, J. H. Yang, Y. S. Kim, and C. H. Chung, "Effect of morphological change of copper-oxide fillers on the performance of solid polymer electrolytes for lithium-metal polymer batteries", RSC Adv., Vol. 9, No. 38, pp. 21760-21770, 2019. https://doi.org/10.1039/c9ra03555a