• Title/Summary/Keyword: Gas removal

Search Result 1,281, Processing Time 0.029 seconds

Effect of an Additives on Simultaneous Removal of NOx, $So_2$by Corona Discharge (코로나 방전에 의한 NOx, $So_2$동시제거에서 첨가제의 영향)

  • 박재윤;고용술;이재동;손성도;박상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.451-457
    • /
    • 2000
  • Experimental investigations on the effect of two kinds of additives ; aqueous NaOH solution and ammonia(NH$_3$) for removal of NOx and SO$_2$ simultaneously by corona discharge were carried out. The simulated combustion flue gas was[NO(0.02[%])-SO$_2$(0.08[%])-$CO_2$-Air-$N_2$] Volume percentage of aqueous NaOH solution used was 20[%] and $N_2$flow rate was 2.5[$\ell$/min] for bubbling aqueous NaOH solution Ammonia gas(14.81[%]) balanced by argon was diluted by air. NH$_3$ molecular ratios(MR) based on [NH$_3$] and [NO+SO$_2$] were 1, 1.5 and 2.5 The vapour of aqueous NaOH solution and NH$_3$was introduced to the main simulated combustion flue gas duct through injection systems which were located at downstream of corona discharge reactor. NOx(NO+NO$_2$) removal rate by injecting the vapour of aqueous NaOH solution was much better than that by injecting NH$_3$however SO$_2$removal rate by injecting NH$_3$was much better than that by injecting the vapour of aqueous NaOH SO$_2$removal rate slightly increased with increasing applied voltage. When the vapour of aqueous NaOH solution and NH$_3$were simultaneously injection NOx and SO$_2$ removal rate were significantly increased.

  • PDF

Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge (DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용)

  • Choi, Yu-ri;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

The Technology of Mist Removal in Flue Gas by the Plasma of Impulse Streamer Corona (저온플라즈마에 의한 배연 가스내의 미스트 처리기술)

  • 하상안;김일배;강신묵
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.69-76
    • /
    • 1999
  • This research was carried but to investigate the characteristics of mist removal with the change of operating conditions in the plasma reactor of impulse streamer corona based on the distribution of particle size measured by laser diffraction spectrometers. The operating conditions in this experiment were power of impulse streamer corona, gas velocity, collection time, and SOx/NOx concentration. The collection efficiency T(d) was estimated by distribution of particle size in the collection zone through the advanced model.

  • PDF

Effect of Adsorbent Pore Characteristics on the Removal Efficiency of Smoke Components. (흡착제 세공 특성이 담배연기성분 제거에 미치는 영향)

  • 이영택;김영호;신창호;임광수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 1992
  • The adsorption efficiency of some adsorbents for the organic solvents and gas phase of smoke was investigated. 1. Specific surface area of activated carbon increased to 1900 mfg with increased activation time. 2. Adsorption efficiency of benzene and acetone increased with increasing total surface area. Adsorption capacity for gas phase such as hydrogen cyanide, aldehyde was proportional to the micro pore surface area under 20A. 3. The removal efficiency of particulate matter of smoke was higher with the adsorbents of relatively higher pore size compared to that of micro pore.

  • PDF

Effect of Limestone Characteristics on In-Furnace Desulfurization under Hot Gas Combustion (석회석 분말을 이용한 노내 고온 건식 탈황 특성 연구)

  • Kim, Sang-in;Lee, Byung-hwa;An, Ke-ju;Hwang, Min-young;Kim, Seung-mo;Jeon, Chung-hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.43-45
    • /
    • 2012
  • The effect of limestone characteristics on in-furnace desulfurization was experimentally investigated at hot gas combustion condition in a drop tube furnace (DTF). Flue gas was measured by Gas analyzer in order to figure out $SO_2$ content. The experiments were performed under excess sulfur 3000ppm condition to examine the effect of operating variables such as reaction temperatures, Ca/S ratios on the $SO_2$ removal efficiencies. The results show that the $SO_2$ removal efficiency increased with reaction temperature and Ca/S ratio increase. When considering the economics, $1200^{\circ}C$ and Ca/S ratio 2 condition is optimized to reduce $SO_2$ emission.

  • PDF

A Study on the removal of B.T.X by UV Photooxidation-Activated Carbon (광산화-활성탄 복합공정에 의한 B.T.X. 분해에 관한 연구)

  • Jeong, Chang Hun;Bae, Hae Ryong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • In this study, The decomposition of gas-phase Benzene and Toluene, Xylene in air streams by direct UV Photolysis, UV/TiO$_2$ and UV/TiO$_2$/A.C process was studied. The experiments were carried out under various UV light intensities and initial concentrations of B.T.X to investigate and compare the removal efficiency of the pollutant. B.T.X was determined by GC-FID of gas samples taken from the a glass sampling bulb which was located at reactor inlet and outlet by gas-tight syringe. From this study, the results indicate that UV/TiO$_2$/A.C system (photooxidation-photocatalytic oxidation-adsorption process) is ideal for treatment of B.T.X from the small workplace. Although the results needs more verifications, the methodology seems to be reasonable and can be applied for various workplace (laundry, gas station et al.).

Anaerobic Digestion of Thickened Septage at Municipal Wastewater Treatment Plant (하수(下水) 처리장(處理場)에서 정수조폐액(淨水槽廢液)의 혐기성소화(嫌氣性消化) 처리(處理)에 관한 연구(硏究))

  • Choi, Eui So;Kim, Tai Hyung;Lee, Ho Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1993
  • Anaerobic Digestion of thickened septage was investigated in this study. Thickening could reduce the volume of septage to be treated to about 40% with 12hr HRT. The VS and BOD removal efficiencies were respectively 28 to 45%, and 75% when digested the thickened septage with 30 day HRT Or $1.4kgVS/m^3/d$. The BOD removal efficiency could be increased to about 90% with subsequent settling tank with about 6 hours HRT. The gas production rate was 0.22 to $0.35m^3gas/kgVSadd$($0.75m^3gas/kgVSrm$), or $1.32m^3gas/kgBOD_{rm}$. In addition, the supernatant of thickener could be returned to the aeration tank treating domestic sewage. In this case, a BOD loading rate of 0.5 to $0.7kgBOD/m^3/d$ or 0.5kgBOD/kgMLVSS/d was proposed for 80% BOD reduction.

  • PDF

Removal of carbon monoxide using a solid electrolyte cell reactor (고체전해질 전지 반응기를 이용한 일산화탄소의 제거)

  • 신석재;오인환
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.112-118
    • /
    • 1996
  • When fossil fuels are burned they produce CO gas because of incomplete combustion. If the CO gas reacts with the hemoglobin in the red blood cells, it may result in death or sequelae. Generally, the CO gas is eliminated in the form of the $$$CO_2$ gas by the oxidation reaction over the platinum catalyst. In this study, the electrochemical CO removal was investgated by using the solid electrolyte cell reactor, the type of which was represented as reactants$/Pt/Y_2O_3-ZrO_2/Pt/Air$. If the overpotential was applied to the platinum working electrode, the conversion could be changed with the overpotential applied. It was found that the oxidation rate could be increased 2.8 times higher than that of the normal condition, i. e. under open circuit conditions when $P_{co}/P_{O_2}$ was 0.5 and overpotential was 0.9V. From these results, it is concluded that the reactor used in this study is more efficient than conventional catalytic reactors.

  • PDF

The Removal of NOx by Mediated Electrochemical Oxidation Using Ag(II) As a Mediator (Ag(II)를 매개체로 사용하는 전기화학적 매개산화에 의한 NOx 제거)

  • Lee, Min-Woo;Park, So-Jin;Lee, Kune-Woo;Choi, Wang-Kyu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • The effects of the applied current density, the $AgNO_3$ concentration, the scrubbing liquid flow rate and the NO-air mixed gas flow rate on the NO removal efficiency were investigated by using $Ag^{2+}$ mediated electrochemical oxidation (MEO). Results showed that the NO removal efficiency increased with increasing the applied current density. The effect of the $AgNO_3$ concentration on the NO removal efficiency was negligibly small in the concentration of $AgNO_3$ above 0.1 M. When the scrubbing liquid flow rate increased, the NO removal efficiency was gradually increased. On the other hands, the NO removal efficiency decreased with increasing the NO-air mixed gas flow rate. As a result of the treatment of NO-air mixed gas by using the MEO process with the optimum operating condition and the chemical absorption process using 3 M $HNO_3$ solution as a scrubbing liquid, the removal efficiency of NO and $NO_x$ was achieved as 95% and 63%, respectively.

Removal Characteristics of Benzene in Dielectric Barrier Discharge Process

  • Chung, Jae-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.13-20
    • /
    • 2002
  • The electrical and chemical properties of the dielectric barrier discharge (DBD) process for the benzene removal were investigated. The benzene removal was initiated with the applied voltage higher than the discharge onset value. The removal efficiency over 95 % was obtained at approximately 1.6 kJ lite $r^{r-1}$ of the electrical energy density. The increase of the inlet concentration decreased the removal efficiency. However, the benzene decomposition rate increased with the inlet concentration . While the increase of the gas retention time enhanced the removal efficiency, the decomposition rate decreased. Identification of the optimum condition between the decomposition rate and the removal efficiency is required for field applications of the DBD process.s.