Browse > Article
http://dx.doi.org/10.7733/jkrws.2011.9.3.121

The Removal of NOx by Mediated Electrochemical Oxidation Using Ag(II) As a Mediator  

Lee, Min-Woo (Korea Atomic Energy Research Institute)
Park, So-Jin (Chungnam National University)
Lee, Kune-Woo (Korea Atomic Energy Research Institute)
Choi, Wang-Kyu (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.9, no.3, 2011 , pp. 121-129 More about this Journal
Abstract
The effects of the applied current density, the $AgNO_3$ concentration, the scrubbing liquid flow rate and the NO-air mixed gas flow rate on the NO removal efficiency were investigated by using $Ag^{2+}$ mediated electrochemical oxidation (MEO). Results showed that the NO removal efficiency increased with increasing the applied current density. The effect of the $AgNO_3$ concentration on the NO removal efficiency was negligibly small in the concentration of $AgNO_3$ above 0.1 M. When the scrubbing liquid flow rate increased, the NO removal efficiency was gradually increased. On the other hands, the NO removal efficiency decreased with increasing the NO-air mixed gas flow rate. As a result of the treatment of NO-air mixed gas by using the MEO process with the optimum operating condition and the chemical absorption process using 3 M $HNO_3$ solution as a scrubbing liquid, the removal efficiency of NO and $NO_x$ was achieved as 95% and 63%, respectively.
Keywords
NO; Mediated electrochemical oxidation (MEO); Current density; Removal efficiency; Gas scrubber;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. N. Po, J. H. Swinehart, and T. L. Allen, "The kinetics and mechanism of oxidation of water by silver(II) in concentrated nitric acid solution," Inorg. Chem., 7(2), 244 (1968).   DOI
2 R. M. Counce, The scrubbing of gaseous nitrogen oxides in packed towers, ORNL Report 5676 (1980).
3 D. S. Jin, B. R. Deshwal, Y. S. Park, and H. K. Lee, " Simultaneous removal of $SO_2$ and NO by scrubbing using aqueous chlorine dioxide solution," J. Haz. Mater., B135, pp. 412-417 (2006).
4 J. Y. Bae, S. H. Jung, D. H. Park, S. I. Park, K. H. Jung, K. S. Cha, T. S. Jung, and J. M. Cha, "A Study on the Opimum of $SO_2/NO$ Simultaneous Removal using Liquid Catalyst," H. KSEE., 29(10), pp. 1091-1098 (2007).
5 T. Raju, S. J. Chung, K. C. Pillai, and I. S. Moon, "Simultaneous Removal of $NO_x\;and\;SO_2$: A Promising Ag(II)/Ag(I) Based Mediated Electrichemical Oxidation System," J. Clean 36 (5-6), pp. 476-481 (2008).
6 D. F. Steele, D. Richardson, J. D. Campbell, D. R. Craig, and J. D. Quinn "The low-temperature destruction of organic waste by electrochemical oxidation," Trans IChemE, 68(b), pp. 115-121 (1990).
7 K. Chandrasekara Pillai, M. Matheswaran, S. J. Chung, and I. S. Moon, "Studies on promising cell performance with $H_2SO_4$ as the catholyte for electrogeneration of $Ag^{2+}$ from $Ag^+$ in $HNO_3$ anolyte in mediated electrochemical oxidation process," J. Appl. Electrochem., 39, pp. 23-30 (2009).   DOI   ScienceOn
8 C. A. C. Sequeira, D. M. F. Santos, and P. S. D. Brito, "Mediated and non-mediated electrochemical oxidation of isopropanol," Appl. Sur. Sci., 252, pp. 6093-6096 (2006).   DOI   ScienceOn
9 H. D. Harmon, M. L. Hyder, B. Tiffany, L. W. Gray, and P. A. Soltys, "Behavior of tributyl phosphate in a-line processes, Sanvannah River Laboratory Report, pp. 20-21, DP1418/UC10 (1076).
10 M. Kang, D. J. Kim, E. D. Park, J. M. Kim, J. E. Yie, S. H. Kim, L. H. Weeks, and E. Eyring, "Two-stage catalyst system for selective catalytic reduction of NOx by $NH_3$ at low temperatures," Appl. Cata. Environmental., 68, pp. 21-17 (2006).   DOI   ScienceOn
11 M. B. Chang, and C, F, Cheng, "Low temperature SNCR process for $NO_x$ control," Sci. Environment., 198, pp. 73-78 (1997).
12 A. Basfar, O. Fageeha, N. Kunnummal, S. Al- Ghamdi, A. Chmielewski, J. Licki, A. Pawelec, B. Tyminski, and Z. Zimek, "Electron beam flue gas treatment technology for simultaneous removal of $SO_2$ and $NO_x$ from combustion of liquid fuels," Fuel., 87, pp. 1446-1452 (2008).   DOI   ScienceOn
13 B. R. Deshwal, S. H. Lee, J. H. Jung, B. H. Shon, and H. K. Lee, "Study on the removal of $NO_x$ from simulated flue gas using acdic $NaClO_2$ solution, " J. Env. Sci., 20, pp. 33-38 (2008).   DOI   ScienceOn
14 Y. S. Mok, and H. J. Lee, "Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique," F. Pro. Tech., 87, pp. 591-597 (2006).   DOI   ScienceOn
15 Y. S. Mok, "Absorption-reduction technique assisted by ozone injection and sodium sulfide for $NO_x$ removal from exhaust gas," Chem. Eng. Jour., 118, pp. 63-67 (2006).   DOI   ScienceOn
16 Z. Wu, H. Wang, Y. Liu, B. Jiang, and Z. Sheng "Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides," Chem. Eng. Jour., 114, pp. 221-226 (2008).
17 S. J. Cheung, K. Chandrasekara Pillai, and I. S. Moon, "A sustainable environmentally friendly $NO_x$ removal process using Ag(II)/Ag(I)-mediated electrochemical oxidation," S. Puri. Tech., 65, pp. 156-163 (2009).   DOI   ScienceOn
18 D. F. Steele, "A novel approach to organic waste disposal," Atom, pp. 393-396 (1989)
19 Z. Chiba, P. R. Lewis and R. W. Kahle "Mediated electrochemical oxidation treatment for Rocky Flats combustible low level mixed wastes," UCRL-ID-112283 (1993).
20 T. Raju, "A sustainable mediated electrochemical process for the abatement of $NO_x$ from simulated flue gas by using Ag(I)/Ag(II) redox mediators," Electrochimica. Acta., 54, pp. 3467-3472 (2009).   DOI   ScienceOn
21 J. Farmer, F. Wang, R. Hawley-Fedder, P. Lewis, L. Summers, and Linda Foiles, "Electrochemical treatment of mixed and hazardous wastes," J. Electrochem. Soc., 139, pp.654-660 (1992).   DOI
22 E. H. Lee, J. K. Lim, D. Y. Chung, H. B. Yang, and K. W. Kim, "Evaluation of co- and sequential for Tc, Np and U by a (TBP-TOA)/n-dodecane-$HNO_3$ extraction system," J. Kor. Rad. Waste. Soc., 5 (2), pp. 133-143 (2007).