DOI QR코드

DOI QR Code

The Removal of NOx by Mediated Electrochemical Oxidation Using Ag(II) As a Mediator

Ag(II)를 매개체로 사용하는 전기화학적 매개산화에 의한 NOx 제거

  • Received : 2011.04.12
  • Accepted : 2011.06.28
  • Published : 2011.09.30

Abstract

The effects of the applied current density, the $AgNO_3$ concentration, the scrubbing liquid flow rate and the NO-air mixed gas flow rate on the NO removal efficiency were investigated by using $Ag^{2+}$ mediated electrochemical oxidation (MEO). Results showed that the NO removal efficiency increased with increasing the applied current density. The effect of the $AgNO_3$ concentration on the NO removal efficiency was negligibly small in the concentration of $AgNO_3$ above 0.1 M. When the scrubbing liquid flow rate increased, the NO removal efficiency was gradually increased. On the other hands, the NO removal efficiency decreased with increasing the NO-air mixed gas flow rate. As a result of the treatment of NO-air mixed gas by using the MEO process with the optimum operating condition and the chemical absorption process using 3 M $HNO_3$ solution as a scrubbing liquid, the removal efficiency of NO and $NO_x$ was achieved as 95% and 63%, respectively.

전기화학적으로 생성되는 $Ag^{2+}$를 사용하는 MEO 공정에 의한 NO 제거에 전류밀도, $AgNO_3$ 농도, 세정 용액의 유속 및 NO-공기 혼합가스 유속이 미치는 영향을 조사하였다. 전류밀도가 증가할수록 NO의 산화 반응 속도 및 제거 효율이 증가하였으며, 0.1 M 이상의 $AgNO_3$ 농도 조건에서 ㅍ 농도가 NO의 제거 효율에 미치는 영향은 무시할 만 하였다. 세정용액의 유속이 증가할수록 NO의 제거효율은 점진적으로 증가한 반면에 NO-공기 혼합가스의 유속이 증가할수록 NO의 제거효율은 점진적으로 감소하였다. 실험 범위 내에서 도출한 최적조건을 적용한 MEO 공정 및 3 M 질산 흡수 공정을 복합적으로 적용하여 NO-공기 혼합가스를 처리하였으며, NO 및 $NO_x$의 제거 효율은 각각 95% 및 63%를 얻었다.

Keywords

References

  1. E. H. Lee, J. K. Lim, D. Y. Chung, H. B. Yang, and K. W. Kim, "Evaluation of co- and sequential for Tc, Np and U by a (TBP-TOA)/n-dodecane-$HNO_3$ extraction system," J. Kor. Rad. Waste. Soc., 5 (2), pp. 133-143 (2007).
  2. H. D. Harmon, M. L. Hyder, B. Tiffany, L. W. Gray, and P. A. Soltys, "Behavior of tributyl phosphate in a-line processes, Sanvannah River Laboratory Report, pp. 20-21, DP1418/UC10 (1076).
  3. M. Kang, D. J. Kim, E. D. Park, J. M. Kim, J. E. Yie, S. H. Kim, L. H. Weeks, and E. Eyring, "Two-stage catalyst system for selective catalytic reduction of NOx by $NH_3$ at low temperatures," Appl. Cata. Environmental., 68, pp. 21-17 (2006). https://doi.org/10.1016/j.apcatb.2006.07.013
  4. M. B. Chang, and C, F, Cheng, "Low temperature SNCR process for $NO_x$ control," Sci. Environment., 198, pp. 73-78 (1997).
  5. A. Basfar, O. Fageeha, N. Kunnummal, S. Al- Ghamdi, A. Chmielewski, J. Licki, A. Pawelec, B. Tyminski, and Z. Zimek, "Electron beam flue gas treatment technology for simultaneous removal of $SO_2$ and $NO_x$ from combustion of liquid fuels," Fuel., 87, pp. 1446-1452 (2008). https://doi.org/10.1016/j.fuel.2007.09.005
  6. B. R. Deshwal, S. H. Lee, J. H. Jung, B. H. Shon, and H. K. Lee, "Study on the removal of $NO_x$ from simulated flue gas using acdic $NaClO_2$ solution, " J. Env. Sci., 20, pp. 33-38 (2008). https://doi.org/10.1016/S1001-0742(08)60004-2
  7. Y. S. Mok, and H. J. Lee, "Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique," F. Pro. Tech., 87, pp. 591-597 (2006). https://doi.org/10.1016/j.fuproc.2005.10.007
  8. Y. S. Mok, "Absorption-reduction technique assisted by ozone injection and sodium sulfide for $NO_x$ removal from exhaust gas," Chem. Eng. Jour., 118, pp. 63-67 (2006). https://doi.org/10.1016/j.cej.2006.01.011
  9. Z. Wu, H. Wang, Y. Liu, B. Jiang, and Z. Sheng "Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides," Chem. Eng. Jour., 114, pp. 221-226 (2008).
  10. S. J. Cheung, K. Chandrasekara Pillai, and I. S. Moon, "A sustainable environmentally friendly $NO_x$ removal process using Ag(II)/Ag(I)-mediated electrochemical oxidation," S. Puri. Tech., 65, pp. 156-163 (2009). https://doi.org/10.1016/j.seppur.2008.10.030
  11. D. F. Steele, "A novel approach to organic waste disposal," Atom, pp. 393-396 (1989)
  12. Z. Chiba, P. R. Lewis and R. W. Kahle "Mediated electrochemical oxidation treatment for Rocky Flats combustible low level mixed wastes," UCRL-ID-112283 (1993).
  13. T. Raju, "A sustainable mediated electrochemical process for the abatement of $NO_x$ from simulated flue gas by using Ag(I)/Ag(II) redox mediators," Electrochimica. Acta., 54, pp. 3467-3472 (2009). https://doi.org/10.1016/j.electacta.2008.12.059
  14. D. S. Jin, B. R. Deshwal, Y. S. Park, and H. K. Lee, " Simultaneous removal of $SO_2$ and NO by scrubbing using aqueous chlorine dioxide solution," J. Haz. Mater., B135, pp. 412-417 (2006).
  15. J. Y. Bae, S. H. Jung, D. H. Park, S. I. Park, K. H. Jung, K. S. Cha, T. S. Jung, and J. M. Cha, "A Study on the Opimum of $SO_2/NO$ Simultaneous Removal using Liquid Catalyst," H. KSEE., 29(10), pp. 1091-1098 (2007).
  16. T. Raju, S. J. Chung, K. C. Pillai, and I. S. Moon, "Simultaneous Removal of $NO_x\;and\;SO_2$: A Promising Ag(II)/Ag(I) Based Mediated Electrichemical Oxidation System," J. Clean 36 (5-6), pp. 476-481 (2008).
  17. D. F. Steele, D. Richardson, J. D. Campbell, D. R. Craig, and J. D. Quinn "The low-temperature destruction of organic waste by electrochemical oxidation," Trans IChemE, 68(b), pp. 115-121 (1990).
  18. K. Chandrasekara Pillai, M. Matheswaran, S. J. Chung, and I. S. Moon, "Studies on promising cell performance with $H_2SO_4$ as the catholyte for electrogeneration of $Ag^{2+}$ from $Ag^+$ in $HNO_3$ anolyte in mediated electrochemical oxidation process," J. Appl. Electrochem., 39, pp. 23-30 (2009). https://doi.org/10.1007/s10800-008-9633-0
  19. C. A. C. Sequeira, D. M. F. Santos, and P. S. D. Brito, "Mediated and non-mediated electrochemical oxidation of isopropanol," Appl. Sur. Sci., 252, pp. 6093-6096 (2006). https://doi.org/10.1016/j.apsusc.2005.11.028
  20. J. Farmer, F. Wang, R. Hawley-Fedder, P. Lewis, L. Summers, and Linda Foiles, "Electrochemical treatment of mixed and hazardous wastes," J. Electrochem. Soc., 139, pp.654-660 (1992). https://doi.org/10.1149/1.2069280
  21. H. N. Po, J. H. Swinehart, and T. L. Allen, "The kinetics and mechanism of oxidation of water by silver(II) in concentrated nitric acid solution," Inorg. Chem., 7(2), 244 (1968). https://doi.org/10.1021/ic50060a015
  22. R. M. Counce, The scrubbing of gaseous nitrogen oxides in packed towers, ORNL Report 5676 (1980).