• Title/Summary/Keyword: Gas generate

Search Result 348, Processing Time 0.044 seconds

Introduction of Off-Gas Power Plant and Localization Development of Auxiliary Equipment (부생복합발전 소개와 주요설비 국산화를 위한 연구)

  • Ko, Minseok;Kim, Dohyung;Lee, Dongsu;Lee, Seong-geun
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.127-128
    • /
    • 2013
  • Off-gas power plant is a renewable energy power plant which generate electrical energy using the low calorie FOG and BFG as main fuel. This combined cycle power plant is comprised of gas turbines, gas compressors, steam turbines, generators, and auxiliary equipment such as gas mixer, mixing tank, and gas cooler. In this paper, a off-gas power plant and development of its several equipment using CFD are introduced.

  • PDF

Ionization of Helium Gas with a Tungsten Tip

  • Kim, Hee-Tae;Yu, Soon-Jae
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.45-48
    • /
    • 2009
  • The ionization of a helium atom was investigated as a function of gas pressure, with the use of a tungsten tip. The tungsten tip, to which the external voltage was applied, was used to generate a constant electron current. The ionization current of helium gas was measured as a function of gas pressure. Effective ionization occurred in the pressure range of 0.5-20 torr when the distance between the field emission tip and the collector was 1 cm. The ionization current was linearly proportional to the voltage that was applied to the tungsten tip.

Atmospheric Pressure Plasma Research Activity in Korea

  • Uhm, Han S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.367-377
    • /
    • 2001
  • Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionization of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pumps, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasmas are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for $21^{st}$ / century industries. This technological research will play a central role in material processing, environmental and energy production industries.

  • PDF

Atomization Using a Pressure-Gas-Atomizer

  • Achelis, Lydia;Uhlenwinkel, Volker;Lagutkin, S.;Sheikhaliev, Sh.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.4-5
    • /
    • 2006
  • An update and the latest results on molten metal atomization using a Pressure-Gas-Atomizer will be given. This atomizer combines a swirl-pressure atomizer, to generate a liquid hollow cone film and a gas atomizer to atomize the film and/or the fragments of the film. The paper is focused on powder production, but this atomization system is also applicable for deposition purposes. Different alloys (Sn, SnCu) were atomized to study the characteristics of the Pressure-Gas-Atomizer.

  • PDF

Decomposition Characteristics of Perfluorocompounds(PFCs) Gas through Gliding Arc Plasma with Hydrogen Gas (수소 가스를 첨가한 글라이딩 아크 플라즈마의 과불화화합물(PFCs) 가스 분해 특성)

  • Song, Chang-Ho;Park, Dong-Wha;Shin, Paik-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • Perfluorocompounds (PFCs) gases were decomposed by gliding arc plasma generated by AC pulse power. $N_2$ gas of 10 LPM flow rate and $H_2$ gas of 0.5 LPM were introduced into the gliding arc plasma generated between a pair of electrodes with SUS 303 material, and the PFCs gases were injected in the plasma and thereby were decomposed. The PFCs gas-decomposition-characteristics through the gliding arc plasma were analyzed by FT-IR, where pure $N_2$ and $H_2$-added $N_2$ environment were used to generate the gliding arc plasma. The PFCs gas-decomposition-properties were changed by electric power for gliding arc plasma generation and the H2 gas addition was effective to enhance the PFCs decomposition rate.

The Basic Study on Economic Evaluation of Distributed Energy System Installed in Hospital (병원건물 분산에너지시스템 도입에 따른 경제성분석)

  • Hong, Won-Pyo;Kim, Hyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1136_1138
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that burn gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

The Basic Study on Economic Evaluation of Micro-turbine and Alternative Energy system Installed in Hospital (병원건물의 마이크로터빈과 신재생에너지도입에 따른 경제성평가 기초연구)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.439-444
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of. solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

Economic Evaluation of Building Micro-Grid Including Geothermal Energy System in Hospital Buildings (지열시스템이 포함된 빌딩마이크로그리드 시스템의 에너지성능평가 및 경제성분석)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.273-277
    • /
    • 2009
  • This paper presents a basic energy performance data of micro gas turbine, Renewable Energy(BIPV and Solar Collector System, geothermal system) and a hybrid energy system(geothermal system and microturbine) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently, the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. Finally, in energy performance aspect, Micro gas turbine system and hybrid energy system were high-efficiency system in hospital building. Hybrid energy system also give us a powerful alternative energy system economically.

  • PDF

High luminous efficiency Mercury-free flat light source for LCD BLU

  • Lee, Ju-Kwang;Oh, Byung-Joo;Jung, Jae-Chul;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1161-1164
    • /
    • 2005
  • A Mercury-free, flat light source which shows high luminance and luminous efficiency simultaneously has been developed. An electrodeless, dielectric barrier discharge is used to generate the plasma using Ne-Xe mixture gas of relatively low gas pressure of a few tens torr in a 4.1 inch diagonal size of flat panel. The basic properties of the long gap glow discharge and its accompanying instabilities, which prevents us from having high luminous efficiency discharge have been analyzed. A new structure and optimized driving methods have been used to generate a glow discharge which shows a wide voltage margin of a few hundred volts. The luminous efficiency and luminance could be 110 lm/W at $1300\;cd/m^2$ and 50 lm/W at $5500\;cd/m^2$.

  • PDF

Analysis and Design of Resonant Inverter for Reactive Gas Generator Considering Characteristics of Plasma Load

  • Ahn, Hyo Min;Sung, Won-Yong;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.345-351
    • /
    • 2018
  • This paper analyzes a resonant inverter to generate plasma. The resonant inverter consists of a full bridge converter, resonant network and reactor to generate a magnetic field for plasma generation. A plasma load has very distinct characteristics compared to conventional loads. The characteristics of plasma load are analyzed through experimental results. This paper presents the study on the resonant network, which was performed in order to determine how to achieve a constant current gain. Another important contribution of this study is the analysis of drop-out phenomenon observed in plasma loads which is responsible for unpredictable shutdown of the plasma generator that requires stable operation. In addition, the design process for the resonant network of a plasma generator is proposed. The validity of this study is verified through simulations and experimental results.