• Title/Summary/Keyword: Gas drag force

Search Result 25, Processing Time 0.024 seconds

Prediction of Parabolic Antenna Satellite Drag Force in Low Earth Orbit using Direct Simulation Monte Carlo Method (직접모사법을 이용한 지구 저궤도 파라볼릭 안테나 탑재 위성의 항력 예측)

  • Shin, Somin;Na, Kyung-Su;Lee, Juyoung;Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.616-621
    • /
    • 2014
  • Consumption of the fuel on the satellite operating in low earth orbit, is increased due to the air resistance and the amount of increase makes the satellite lifetime decrease or the satellite mass risen. Therefore the prediction of drag force of the satellite is important. In the paper, drag force and drag coefficient analysis of the parabolic antenna satellite in low earth orbit using direct simulation monte carlo method (DSMC) is conducted according to the mission altitude and angle of attack. To verify the DSMC simulated rarefied air movement, Starshine satellite drag coefficient according to the altitude and gas-surface interaction are compared with the flight data. Finally, from the analysis results, it leads to appropriate satellite drag coefficient for orbit lifetime calculation.

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

Nonlinear Dynamical Friction of a Circular-orbit Perturber in a Uniform Gaseous Medium

  • Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • We use three-dimensional hydrodynamic simulations to investigate nonlinear gravitational responses of gas to, and the resulting drag force on, a massive perturber moving on a circular orbit through a uniform gaseous medium. We assume that the background medium is non-rotating and adiabatic with index 5/3, and represent the perturber using a Plummer potential with softening radius a. This work extends our previous study where we showed that the drag force on a straight-line trajectory is proportional to a0.45 if the perturber is massive enough. This indicates that the orbital decay of supermassive black holes (SMBHs) near galaxy centers may take much longer than the prediction of the linear force formula applicable for low-mass perturbers. For the circular orbits are considered, however, we find that the nonlinear drag force becomes independent of a, but dependent instead on the orbital radius R as $\varpropto$ R0.5. This suggests not only that the choices of large values of a, for resolution issues, in recent numerical experiments for mergers of SMBH, are marginally acceptable, but also that the gaseous drag indeed provides an efficient mean for the orbtial decay of SMBHs.

  • PDF

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

Performance Analysis of Interior Ballistics using 1-D Numerical Method (1차원 수치 해석을 통한 강내탄도 성능해석)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.241-249
    • /
    • 2012
  • Performance analysis of the interior ballistics has been conducted using the 1-D numerical code called IBcode according to the various conditions such as length of ignition-gas injector, amount of ignition-gas, mass of projectile, and drag force of projectile. In case of the length of ignition-gas injector, the 25~100 % of the full-injector length has been considered as well as the mass & mass flow of the ignition-gas. The mass of the projectile 5~70 kg and its drag force of 0~69 MPa have been also considered. Variables such as breech & base pressure, negative differential pressure and muzzle velocity for the performance analysis have been sorted, too. Firing conditions for the optimal performance have been investigated through these variables.

Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process (진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구)

  • Park, Hyungkwon;Kwon, Juhyuk;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

A Study on the Mixture Formation Process of Diesel Fuel Spray in Unsteady and Evaporative Field

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2253-2262
    • /
    • 2005
  • The focus of this work is placed on the analysis of the mixture formation mechanism under the evaporative diesel spray of impinging and free conditions. As an experimental parameter, ambient gas density was selected. Effects of density variation of ambient gas on liquid and vapor-phase inside structure of evaporation diesel spray were investigated. Ambient gas density was changed between ${\rho}a=5.0\;kg/m^3$ and $12.3\;kg/m^3$. In the case of impinging spray, the spray spreading to the radial direction is larger due to the decrease of drag force of ambient gas in the case of the low density than that of the high density. On the other hand, in the case of free spray, in accordance with the increase in the ambient gas density, the liquid-phase length is getting short due to the increase in drag force of ambient gas. In order to examine the homogeneity of mixture consisted of vapor-phase fuel and ambient gas in the spray, image analysis was conducted with statistical thermodynamics based on the non-dimensional entropy (S) method. In the case of application of entropy analysis to diesel spray, the entropy value always increases. The entropy of higher ambient density is higher than that of lower ambient gas density during initial injection period.

Numerical Analysis for Drag Force of Underwater Vehicle with Exhaust Injected inside Supercavitation Cavity (초공동 수중비행체의 공동영역 내부에서 분사된 배기가스가 수중비행체의 항력에 미치는 영향에 대한 수치해석적 연구)

  • Yoo, Sang Won;Lee, Woo Keun;Kim, Tea Soon;Kwack, Young Kyun;Ko, Sung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.913-919
    • /
    • 2015
  • A supercavitating vehicle has a speed of more than 300 km/h in water. A numerical analysis of the flow around a supercavitating vehicle must deal with a multiphase flow consisting of the water, vapor and exhaust gas because the vehicle is powered by roket propulsion. The effect of the exhaust gas on the vehicle is an important part in the study of the performance of the supercavitating vehicle. In the present study, the effect of the exhaust gas on the drag of vehicle was investigated by conducting numerical analysis. When there is no exhaust gas, drag of vehicle is affected by re-entrant. In the case with rocket propulsion, the exhaust gas reduces the influence of re-entrant. The exhaust gas also creates Mach disk and it changes drag profile.

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF

GAS-DYNAMICAL FRICTION OF A PERTURBER MOVING ON A CIRCULAR ORBIT

  • Kim, Hyo-Sun;Kim, Woong-Tae
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.179-182
    • /
    • 2007
  • Dynamical friction plays an important role in reducing angular momenta of objects in orbital motions. While astronomical objects usually follow curvilinear orbits, most previous studies focused on the linear-trajectory cases. Here, we present the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. The circular orbit causes the density wakes to bend along the orbit into asymmetric configurations, resulting in the drag forces in both opposite (azimuthal) and lateral (radial) directions to the perturber motion, although the latter does not contribute to the orbital decay much. For a subsonic perturber, the bending of a wake is only modest and the resulting drag force in the opposite direction is remarkably similar to the linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, creating a high-density trailing tail. Despite the dramatic changes in the wake morphologies, the azimuthal drag force is in surprisingly good agreement with the formulae of Ostriker for the linear-trajectory cases, provided $V_pt=2R_p,\;where\;V_p\;and\;R_p$ are the velocity and orbital radius of the perturber, respectively.