DOI QR코드

DOI QR Code

GAS-DYNAMICAL FRICTION OF A PERTURBER MOVING ON A CIRCULAR ORBIT

  • Kim, Hyo-Sun (Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Woong-Tae (Department of Physics and Astronomy, Seoul National University)
  • Published : 2007.12.31

Abstract

Dynamical friction plays an important role in reducing angular momenta of objects in orbital motions. While astronomical objects usually follow curvilinear orbits, most previous studies focused on the linear-trajectory cases. Here, we present the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. The circular orbit causes the density wakes to bend along the orbit into asymmetric configurations, resulting in the drag forces in both opposite (azimuthal) and lateral (radial) directions to the perturber motion, although the latter does not contribute to the orbital decay much. For a subsonic perturber, the bending of a wake is only modest and the resulting drag force in the opposite direction is remarkably similar to the linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, creating a high-density trailing tail. Despite the dramatic changes in the wake morphologies, the azimuthal drag force is in surprisingly good agreement with the formulae of Ostriker for the linear-trajectory cases, provided $V_pt=2R_p,\;where\;V_p\;and\;R_p$ are the velocity and orbital radius of the perturber, respectively.

Keywords

References

  1. Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton Univ. Press)
  2. Chandrasekhar, S. 1943, Dynamical Friction. I. General Considerations: the Coefficient of Dynamical Friction, ApJ, 97, 255 https://doi.org/10.1086/144517
  3. Chang, H.-Y. 2001, Cooling a Hot Disk around a Supermassive Black Hole by a Star, ApJ, 551, L159
  4. Dokuchaev, V. P. 1964, Emission of Magnetoacoustic Waves in the Motion of Stars in Cosmic Space, Soviet Astron, 8, 23
  5. Dotti, M., Colpi, M., & Haardt, F. 2006, Laser Interferometer Space Antenna double black holes: dynamics in gaseous nuclear discs, MNRAS, 367, 103 https://doi.org/10.1111/j.1365-2966.2005.09956.x
  6. El-Zant, A. A., Kim, W.-T., & Kamionkowski, M. 2004, Dynamical-friction galaxy-gas coupling and cluster cooling flows, MNRAS, 354, 169 https://doi.org/10.1111/j.1365-2966.2004.08175.x
  7. Escala, A., Larson, R. B., Coppi, P. S., & Mardones, D. 2004, The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging in a Spherical Gas Cloud. ApJ. 607. 765 https://doi.org/10.1086/386278
  8. Escala, A., Larson, R. B., Coppi, P. S., & Mardones, D. 2005, The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. II. Black Hole Merging in a Nuclear Gas Disk, ApJ, 630, 152 https://doi.org/10.1086/431747
  9. Karas, V., Subr, L. 2001, Orbital decay of satellites crossing an accretion disc, A&A, 376, 686 https://doi.org/10.1051/0004-6361:20011009
  10. Kim, W.-T., El-Zant, A. A., & Kamionkowski, M. 2005, Dynamical Friction and Cooling Flows in Galaxy Clusters, ApJ, 632, 157 https://doi.org/10.1086/432976
  11. Kim, R., & Kim, W.-T. 2007, Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium, ApJ, 665, 432 https://doi.org/10.1086/519302
  12. Narayan, R. 2000, Hydrodynamic Drag on a Compact Star Orbiting a Supermassive Black Hole, ApJ, 536, 663 https://doi.org/10.1086/308956
  13. Ostriker, E. C. 1999, Dynamical Friction in a Gaseous Medium, ApJ, 513, 252 (O99) https://doi.org/10.1086/311922
  14. Rephaeli, Y., & Salpeter, E. E. 1980, Flow past a massive object and the gravitational drag, ApJ, 240, 20 https://doi.org/10.1086/158202
  15. Ruderman, M. A., & Spiegel, E. A. 1971, Galactic Wakes, ApJ, 165, 1 https://doi.org/10.1086/150875
  16. Sanchez-Salcedo, F. J., & Brandenburg, A. 1999, Deceleration by Dynamical Friction in a Gaseous Medium, ApJ, 522, L35
  17. Sanchez-Salcedo, F. J., & Brandenburg, A. 2001, Dynamical friction of bodies orbiting in a gaseous sphere, MNRAS, 322, 67

Cited by

  1. Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes vol.838, pp.1, 2017, https://doi.org/10.3847/1538-4357/aa6117