Browse > Article
http://dx.doi.org/10.5303/JKAS.2007.40.4.179

GAS-DYNAMICAL FRICTION OF A PERTURBER MOVING ON A CIRCULAR ORBIT  

Kim, Hyo-Sun (Department of Physics and Astronomy, Seoul National University)
Kim, Woong-Tae (Department of Physics and Astronomy, Seoul National University)
Publication Information
Journal of The Korean Astronomical Society / v.40, no.4, 2007 , pp. 179-182 More about this Journal
Abstract
Dynamical friction plays an important role in reducing angular momenta of objects in orbital motions. While astronomical objects usually follow curvilinear orbits, most previous studies focused on the linear-trajectory cases. Here, we present the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. The circular orbit causes the density wakes to bend along the orbit into asymmetric configurations, resulting in the drag forces in both opposite (azimuthal) and lateral (radial) directions to the perturber motion, although the latter does not contribute to the orbital decay much. For a subsonic perturber, the bending of a wake is only modest and the resulting drag force in the opposite direction is remarkably similar to the linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, creating a high-density trailing tail. Despite the dramatic changes in the wake morphologies, the azimuthal drag force is in surprisingly good agreement with the formulae of Ostriker for the linear-trajectory cases, provided $V_pt=2R_p,\;where\;V_p\;and\;R_p$ are the velocity and orbital radius of the perturber, respectively.
Keywords
hydrodynamics; ISM: general; shock waves;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 El-Zant, A. A., Kim, W.-T., & Kamionkowski, M. 2004, Dynamical-friction galaxy-gas coupling and cluster cooling flows, MNRAS, 354, 169   DOI   ScienceOn
2 Chang, H.-Y. 2001, Cooling a Hot Disk around a Supermassive Black Hole by a Star, ApJ, 551, L159
3 Dokuchaev, V. P. 1964, Emission of Magnetoacoustic Waves in the Motion of Stars in Cosmic Space, Soviet Astron, 8, 23
4 Dotti, M., Colpi, M., & Haardt, F. 2006, Laser Interferometer Space Antenna double black holes: dynamics in gaseous nuclear discs, MNRAS, 367, 103   DOI   ScienceOn
5 Escala, A., Larson, R. B., Coppi, P. S., & Mardones, D. 2004, The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging in a Spherical Gas Cloud. ApJ. 607. 765   DOI
6 Escala, A., Larson, R. B., Coppi, P. S., & Mardones, D. 2005, The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. II. Black Hole Merging in a Nuclear Gas Disk, ApJ, 630, 152   DOI
7 Karas, V., Subr, L. 2001, Orbital decay of satellites crossing an accretion disc, A&A, 376, 686   DOI   ScienceOn
8 Kim, W.-T., El-Zant, A. A., & Kamionkowski, M. 2005, Dynamical Friction and Cooling Flows in Galaxy Clusters, ApJ, 632, 157   DOI
9 Kim, R., & Kim, W.-T. 2007, Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium, ApJ, 665, 432   DOI
10 Narayan, R. 2000, Hydrodynamic Drag on a Compact Star Orbiting a Supermassive Black Hole, ApJ, 536, 663   DOI
11 Ostriker, E. C. 1999, Dynamical Friction in a Gaseous Medium, ApJ, 513, 252 (O99)   DOI
12 Rephaeli, Y., & Salpeter, E. E. 1980, Flow past a massive object and the gravitational drag, ApJ, 240, 20   DOI
13 Ruderman, M. A., & Spiegel, E. A. 1971, Galactic Wakes, ApJ, 165, 1   DOI
14 Sanchez-Salcedo, F. J., & Brandenburg, A. 1999, Deceleration by Dynamical Friction in a Gaseous Medium, ApJ, 522, L35
15 Sanchez-Salcedo, F. J., & Brandenburg, A. 2001, Dynamical friction of bodies orbiting in a gaseous sphere, MNRAS, 322, 67
16 Chandrasekhar, S. 1943, Dynamical Friction. I. General Considerations: the Coefficient of Dynamical Friction, ApJ, 97, 255   DOI
17 Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton Univ. Press)