• Title/Summary/Keyword: Gas accident analysis

Search Result 307, Processing Time 0.02 seconds

GIS based Effective Methodology for GAS Accident Management (GIS를 이용한 효율적인 가스사고관리 방법에 관한 연구)

  • 김태일;김계현;전방진;곽태식
    • Spatial Information Research
    • /
    • v.12 no.1
    • /
    • pp.89-100
    • /
    • 2004
  • Nowadays, the gas utilities have been increasing constantly due to the expansion of the urban areas. Using computerized information database, the gas companies have developed a gas management system in order to maintain the current status. However, this system can only give basic functions of the maintenance and management of the gas facilities and it has no proper utilities to provide information against accidents from gas leaks. Therefore, a gas accident management system has been developed in this study. Through primary and secondary pipe searching algorithm realtime based management system was devised against gas leaks to propose proper actions. In addition, supporting decision making has been enabled providing estimated maximum amount of gas leaks. Furthermore, all the residential units could be identified thereby minimizing damages through early warning. This system can be expected to contribute to enhance the efficiency of the gas management not to mention of protecting human lives and properties of the nation.

  • PDF

The Study on Evaluation of Human Body Injury by Explosion of Portable Butane Gas Range (부탄연소기 폭발로 인한 인체 상해 평가에 관한 연구)

  • Kim, Eui Soo;Shim, J.H.;Kim, J.P.;Park, N.K.
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.60-67
    • /
    • 2016
  • The gas leak and explosion accident is able to give a fatal injury to nearby people from the explosion center and interest in effect of the explosion on the human body is increased. Accidents by Portable Butane Gas Range of a gas explosion accident occupy the most share. As a result, the injury on the human body frequently occur. However, It is situation that are experiencing difficulties in consequence analysis of explosion accidents owing to shortage of explosion power data and lack of research on the effect of the human body by the gas explosion. This paper acquire human injury data by performing the actual explosion experiment with Portable Butane Gas Range and evaluate power by explosion and effect of explosion on the human body to perform explosion simulation with LS-DYNA program. It is intended to contribute to the exact cause of the accident investigation and the same type of accident prevention.

A Study on the extent of damage from fire accident Caused by Unloading of LPG Bulk Lorry (LPG 벌크로리 충전중 화재사고에 따른 사고피해영향범위에 관한 연구)

  • Lee, Myoung Ho;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • The study analyses secondary damage of surrounding facilities from the fire accident by Unloading of LPG Bulk Lorry. Potential risk and extent of damage from jet flame and radiation heat is estimated with PHAST-RISK v6.7 program of DNV. According to above study, supplies can predict the damage range from gas release by Unloading, and be able to respond quickly.

A Forensic Engineering Study on Bursting Accident of Composite Pressure Vessel in CNG Bus (CNG버스 복합재 압력용기 파열사고에 관한 법공학적 연구)

  • Kim, Eui-Soo;Kim, Jin-Pyo;Park, Nam-Kyu;Kim, Youn-Hoi
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • The bus using compressed natural gas(CNG) trend to be extended in use internationally as optimal counter-plan for reducing discharge gas of light oil due to high concern about environment. But, Composit pressure vessels(CPV) to be equipped with CNG bus is always involved in the point that safety accidents happen due to having compressed natural gas. In this report, we analysis the cause of CPV bursting accident by reviewing design and manufacture factor and suggest preventive measure through this case.

A Study on the Analysis of Accident Cases in Laboratories (실험실의 사고사례 분석에 관한 연구)

  • Lee, Keun-Won;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.21-27
    • /
    • 2012
  • The loss of life and property due to accidents in the research facilities or the laboratories of the university occurs steadily and the necessity of laboratory accident prevention is proposed. Above all, the main work to laboratory accident prevention is a systematic analysis of laboratories accidents. Analyzing reports or researches on industrial accidents in Korea had been carried out but these researches or reports did not based on laboratory accidents analysis. To the establishment of the accident prevention countermeasure in laboratory, a questionnaire sheet has been developed in this study. The questionnaires to survey the accident cases were gathered by electronic mail and visit survey from the laboratories and universities. The data of accident cases from the questionnaires was analyzed and discussed on accident distribution by season, the type of accident classification, the type of occurrence, the objects that caused the accident and laboratory accident by the damage incurred etc.. These results of this study can be used as basic data to the safety security and laboratory accident prevention of the laboratory worker.

RESEARCH EFFORTS FOR THE RESOLUTION OF HYDROGEN RISK

  • HONG, SEONG-WAN;KIM, JONGTAE;KANG, HYUNG-SEOK;NA, YOUNG-SU;SONG, JINHO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.33-46
    • /
    • 2015
  • During the past 10 years, the Korea Atomic Energy Research Institute (KAERI) has performed a study to control hydrogen gas in the containment of the nuclear power plants. Before the Fukushima accident, analytical activities for gas distribution analysis in experiments and plants were primarily conducted using a multidimensional code: the GASFLOW. After the Fukushima accident, the COM3D code, which can simulate a multidimensional hydrogen explosion, was introduced in 2013 to complete the multidimensional hydrogen analysis system. The code validation efforts of the multidimensional codes of the GASFLOW and the COM3D have continued to increase confidence in the use of codes using several international experimental data. The OpenFOAM has been preliminarily evaluated for APR1400 containment, based on experience from coded validation and the analysis of hydrogen distribution and explosion using the multidimensional codes, the GASFLOW and the COM3D. Hydrogen safety in nuclear power has become a much more important issue after the Fukushima event in which hydrogen explosions occurred. The KAERI is preparing a large-scale test that can be used to validate the performance of domestic passive autocatalytic recombiners (PARs) and can provide data for the validation of the severe accident code being developed in Korea.

The Quantitative Risk Analysis in Rail Transport of Propylene (프로필렌의 철도 수송에 따른 정량적 위험성 평가)

  • Lee, Jae-Hean;Song, Dong-Woo;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.38-44
    • /
    • 2010
  • This treatise analyzed the risk of propylene transported by railroad through quantitative analysis. As a result of survey on propylene transportation route, Iksan station, Suncheon station and Jeonju station were selected as object regions those were expected to have high accident risks. This treatise deduced the scenario of accident and the occurrence rate in accordance with the type of accident possibly to be happening during propylene transportation through ETA( Event Tree Analysis), and expressed the level of personal, social risks after calculating the level of demage influencing over surroundings based on the evaluation for the expected accident damage through PHAST 6.53.

A Study of Damage Assessment Caused by Hydrogen Gas Leak in Tube Trailer Storage Facilities (수소 Tube Trailer 저장시설에서의 수소가스 누출에 따른 사고피해예측에 관한 연구)

  • Kim, Jong-Rak;Hwang, Seong-Min;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.32-38
    • /
    • 2011
  • As the using rate of an explosive gas has been increased in the industrial site, the regional residents adjacent to the site as well as the site workers have frequently fallen into a dangerous situation. Damage caused by accident in the process using hydrogen gas is not confined only to the relevant process, but also is linked to a large scale of fire or explosion and it bring about heavy casualties. Therefore, personnel in charge should investigate the kinds and causes of the accident, forecast the scale of damage and also, shall establish and manage safety countermeasures. We, in Anti-Calamity Research Center, forecasted the scope of danger if break out a fire or/and explosion in hydrogen gas facilities of MLCC firing process. We selected piping leak accident, which is the most frequent accident case based on an actual analysis of accident data occurred. We select and apply piping leak accident which is the most frequent case based on an actual accident data as a model of damage forecasting scenario caused by accident. A jet fire breaks out if hydrogen gas leaks through pipe size of 10 mm ${\Phi}$ under pressure of 120 bar, and in case of $4kw/m^2$ of radiation level, the radiation heat can produce an effect on up to distance of maximum 12.45 meter. Herein, we are going to recommend safety security and countermeasures for improvement through forecasting of accident damages.

Assessment of Safety Management Cost with Accident Scenarios at Gas Governor Station (가스공급기지에서 사고 시나리오에 따른 안전관리비 평가)

  • Kim Tae-Ok;Jang Seo-Il;Kim So-Mi
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.37-42
    • /
    • 2004
  • This study established a catastrophic scenario and a likely scenario by qualitative and quantitative risk assessments to consider climate condition with season, and assessed efficiency of safety management cost with scenarios by cost-benefit analysis. As results, the catastrophic scenario was the maintenance error for unsteady state operation, and the likely scenario was the gas release accident at node $\sharp$4 of HAZOP Also, benefit/cost ratios for total safety management cost and effective items of safety management could be assessed at each scenario.

  • PDF

Development of IoT-based Safety Management Method through an Analysis of Risk Factors for Industrial Valves (산업용 밸브의 위험요소 분석을 통한 IoT 기반 안전관리 방안 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.35-43
    • /
    • 2019
  • The safety of industrial valves, which are the core parts of plant facilities, are managed by manpower and there are difficulties because of side area for inspection and limited accessibility due to the nature of facilities. The industrial valves used in plant facilities cause problems such as interrupted production; a loss of life due to leak or explosion of poisonous material and flammable gases, and difficulty in locating accident positions in the event of leakage or failure. Therefore, safety management and control systems based on IoT technology are needed. This study is about the development of risk factor prediction technique among the safety management of industrial valves through IoT- based wireless communication and the development of actuator control system. We have developed IoT-based industrial valve safety management techniques to prevent accidents caused by main risk factors by conducting an analysis of the structural characteristics of valves and an analysis of the causes of main risk factors through review of failure data and literature and an analysis of accident scenarios.