• Title/Summary/Keyword: Gas Industries

Search Result 627, Processing Time 0.026 seconds

A Study on Optimal Insulation Design of the Distribution Level HTS FCL (배전급 고온초전도 한류기 절연설계 최적화 연구)

  • Seok, B.Y.;Kang, H.;Lee, C.;Nam, K.;Ko, T.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.723-724
    • /
    • 2006
  • In this study, superconducting coil arrangements and cryostat concept design were conducted for the development of 13.2kV/630A bifilar winding type high temperature superconducting(HTS) fault current limiter(FCL) with YBCO coated conductor(CC) wire. The coil consists of several layers with unique non-inductive solenoid winding method. Six types of HTS coil arrangements were investigated for the optimal insulation design of HTS FCL. And, conceptual design of cryostat was conducted for the decrement of thermal invasion and the prevention of low voltage insulation breakdown in the LHe which is used as pressurization gas in sub-cooling condition of liquid nitrogen(LN2). As the results, it was found that the modified suspended type cryostat with horizontal coil arrangement is beneficial to the insulation design of 13.2kV level bifilar winding type HTS FCL.

  • PDF

A Study of Mechanical Characteristics at Room/Cryogenic Temperature of Powder Insulation Materials Applied to Type C Fuel Tank (Type C 연료탱크에 적용되는 분말형 단열 소재의 상온/극저온 기계적 특성에 관한 연구)

  • Kim, Tae-Wook;Oh, Jae-Won;Seo, Young-Kyun;Han, Seong-Jong;Lee, Jae-Myung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.787-793
    • /
    • 2021
  • The global demand for Liquefied Natural Gas(LNG) continues to increase and is facing a big cycle. To keep pace with the increase in international demand for LNG, the demand for LNG fueled ships is also increasing. Since LNG fuel tanks are operated in a cryogenic environment, insulation technology is very important, and although there are various types of insulation applied to Type C tanks, multi-layer insulation and vacuum insulation are typically applied. Powder insulation materials are widely used for storage and transportation of cryogenic liquids in tanks with such a complex insulation structure. In this study, compression tests at room and cryogenic temperature were performed on closed perlite, glass bubble, and fumed silica, which are representative powder insulation material candidates. Finally, the applicability to the Type C fuel tank was reviewed by analyzing the experimental results of this study.

No Root Cap Horizontal Butt-welding with MAG Process

  • Jang, T.W.;Cho, S.H.;Park, C.G.;Lee, J.W.;Woo, W.C.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.34-38
    • /
    • 2003
  • It has been used many kinds of horizontal butt-welding methods at block-to-block erection stage in shipbuilding companies. For examples, some companies use conventional FCAW process with one side or both sides groove joint welding, others use carriage with torch holder type mechanized welding method. Although lots of efforts were done until now, some problems in quality and productivity still remain in ship's hull welding. In this study, we have attempted to raise productivity and quality on horizontal position of welding with following 3 items. 1) Prepare groove condition with no root gap for making easy fit-up work. 2) Develop improved MAG (100% $CO_2$ gas shielding) welding process with solid wire for making sound root bead from one side. 3) Develop and apply quite new automatic welding carriage. The stability of new welding process was confirmed by conducting mechanical tests of weldments to verify the soundness of weldments.

  • PDF

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

A Review on Practical Use of Simple Analysis Method based on SDOF Model for the Stiffened Plate Structures subjected to Blast Loads (폭발하중을 받는 보강판 구조물의 간이 해석법에 대한 실용성 검토)

  • Kim, Ul-Nyeon;Ha, Simsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.

Potential Applicabilities of Ammonia in Future Hydrogen Energy Supply Industries (미래 수소 에너지 공급 산업에서 암모니아의 활용성)

  • Lee, Sooyoung;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.667-672
    • /
    • 2019
  • As a non-renewable energy source, fossil fuel causes environment problems, numerous efforts have been made for a global decarbonization, for example, the realization of Power 2 Gas (P2G) system as a definitive research goal. In particular, ammonia is regarded as an emerging source since it can be used as a hydrogen carrier and production alongside for fuel cell applications. In this mini-review, we summarized the properties of ammonia and further highlighted the worldwide research trend for its superb potential in hydrogen energy supply industries.

Damping Effect of Reinforced Polyurethane Foam under Various Temperatures

  • Lee, Tak-Kee;Kim, Myung-Hyun;Rim, Chae-Whan;Chun, Min-Sung;Suh, Yong-Suk
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.230-235
    • /
    • 2011
  • Reinforced polyurethane foam (RPUF) is one of the important materials of Mark III type insulation systems used in liquefied natural gas (LNG) cargo containment systems. However, RPUF is the most difficult material to use with regard to its safety assessment, because there is little public and reliable data on its mechanical properties, and even some public data show relatively large differences. In this study, to investigate the structural response of the system under compressive loads such as sloshing action, time-dependent characteristics of RPUF were examined. A series of compressive load tests of the insulation system including RPUF under various temperature conditions was carried out using specimens with rectangular section. As a result, the relationship between deformation of RPUF and time is linear and dependent on the loading rate, so the concept of strain rate could be applied to the analysis of the insulation system. Also, we found that the spring constant tends to converge to a value as the loading rate increases and that the convergence level is dependent on temperature.

A Study on the Importance of Safety Measurement Based on the Analysis of the Factors Leading to Serious Accidents Related to Chemical Industries (화학 관련 산업의 중대 재해 원인분석을 통한 안전관리 중요성에 관한 연구)

  • An, Hyung Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • This study is an analysis of characteristics and the causes of serious accidents in chemical industry. The statistical analysis was focused on preventive facilities, equipment failures, accident materials and instabilities of workers and employment type. First, it showed that the highest number of the victims of accidents were involved in the industry of chemical materials and chemical products among the investigation of the manufactural industries. Also, particularly, they were investigated to be focused on the occurrence of the serious accidents in preventive facilities. Secondly, the most of the victims of serious accidents were found out not to be temporary or part-time worker but regular workers and most of the accidents occur in the form of big accidents involving more than 4 workers.

Effect of Microporosity on Tensile Properties of As-Cast AZ91D Magnesium Alloy

  • 이충도
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.283-283
    • /
    • 1999
  • In the present study, the effect of microporosity on the tensile properties of as-cast AZ91D magnesium alloy was investigated through experimental observation and numerical prediction. The test specimens were fabricated by die-casting and gravity-casting. For gravity-casting, the inoculation and use of various metallic moulds were applied to obtain a wide range of microporosity. The deficiency of the interdendritic feeding of the liquid phase acted as d dominant mechanism on the formation of the micropores in the Mg-Al-alloys, rather than the evolution of hydrogen gas. Although tensile strength and elongation has a nonlinear and very intensive dependence upon microporosity, the yield strength appeared to have a linear relationship with microporosity. However, it was possible to quantitatively estimate the linear contribution of microporosity on the individual tensile property far a range of microporosity, which was below about B %. The numerical prediction suggests that the effect of microporosity on fractured strength and elongation decreased as the strain hardening exponent increased. Furthermore. the shape and distribution of micropores may play a more dominant role than local plastic deformation on the tensile behavior of AZ9lD alloy.

An Input-Output Analysis on the Korean Railway Industry with the 2003 Input-Output Tables (2003 산업연관표를 이용한 철도운송산업의 경제적 파급효과 분석)

  • Yoon, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.410-416
    • /
    • 2008
  • The inter-industrial inducement effects of the korean railway services on the output, value-added, imports of the 403 industrial sectors of the korean economy have been computed by the input-output analysis technique utilizing the 2003 Input-Output Tables, which was published most recently in April 2007 by the Bank of Korea. The korean railway service industry produced \2,766 billion worth of passenger and freight railroad services in the 2003 year, and it has induced \1,701 billion worth of output, \781 billion worth of value-added, and \580 billion worth of imports of the korean industry as a whole. The energy sector industries such as diesel fuel, thermal power generation, nuclear power generation, crude oil, liquid natural gas, bituminous coal, liquid propane gas have been most affected by the korean railway services. Other industries mainly affected by the korean railway services include railroad car manufacturing, cleaning and decontamination, medical and health service, machinery equipment and rental, construction and maintenance, transportation related services, business R&D, property insurance, and telecommunication.