References
- T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, and Y. Kojima, Review on ammonia absorption materials: Metal hydrides, halides, and borohydrides, ACS Appl. Energy Mater., 1, 232-242 (2018). https://doi.org/10.1021/acsaem.7b00111
- Y. Zhou, G. Zhang, M. Yu, X. Wang, J. Lv, and F. Yang, Free-standing 3D porous N-doped graphene aerogel supported platinum nanocluster for efficient hydrogen production from ammonia electrolysis, ACS Sustain. Chem. Eng., 6, 8437-8446 (2018). https://doi.org/10.1021/acssuschemeng.8b00586
- H. I. Park, I. Kim, B. K. Lee, J. R. Haw, and T. Hur, Life cycle assessment on hydrogen production by direct thermal cracking of natural gas, J. Korean Ind. Eng. Chem., 14, 799-806 (2003).
- M. Gotz, J. Lefebvre, F. Mors, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, and T. Kolb, Renewable power-to-gas: A technological and economic review, Renew. Energy, 85, 1371-1390 (2016). https://doi.org/10.1016/j.renene.2015.07.066
- I. A. Gondal,, Hydrogen integration in power-to-gas networks, Int. J. Hydrogen Energy, 44, 1803-1815 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.164
- S. B. Walker, M. Fowler, and L. Ahmadi, Comparative life cycle assessment of power-to-gas generation of hydrogen with a dynamic emissions factor for fuel cell vehicles, J. Energy Storage, 4, 62-73 (2015). https://doi.org/10.1016/j.est.2015.09.006
- S. Uhm, M. Seo, and J. Lee, Review: Competitiveness of formic acid fuel cells: In comparison with methanol, J. Korean Ind. Eng. Chem., 27, 123-127 (2016).
- A. Alera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69, 63-102 (2018). https://doi.org/10.1016/j.pecs.2018.07.001
- R. Lan and S. Tao, Ammonia as a suitable fuel for fuel cells, Front. Energy Res., 2, 1-4 (2014).
- M. Xue, Q. Wang, B.-L. Lin, and K. Tsunemi, Assessment of ammonia as an energy carrier from the perspective of carbon and nitrogen footprints, ACS Sustain. Chem. Eng., 7, 12494-12500 (2019). https://doi.org/10.1021/acssuschemeng.9b02169
- W. Wang, J. M. Herreros, A. Tsolakis, and A. P. E. York, Ammonia as hydrogen carrier for transportation: Investigation of the ammonia exhaust gas fuel reforming, Int. J. Hydrogen Energy, 38, 9907-9917 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.144
- A. T. Wijayanta, T. Oda, C. W. Purnomo, T. Kashiwagi, and M. Aziz, Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review, Int. J. Hydrogen Energy, 44, 15026-15044 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.112
- H. Quack, Conceptual design of a high efficiency large capacity hydrogen liquefier, AIP Conf. Proc., 613, 255-263 (2002).
- F. Shiozawa, Energy carrier towards the creation of hydrogen society, IEEI, http://ieei.or.jp/2015/05/expl150501/2/
- A. Godula-Jopek, W. Jehle, and J. Wellnitz, Hydrogen Storage Technologies: New Materials, Transport and Infrastructure, J. Wellnitz, 11-79, Wiley, NY, USA (2012).
- D. O. Berstad, J. H. Stang, and P. Neksa, Comparison criteria for large-scale hydrogen liquefaction processes, Int. J. Hydrogen Energy, 34, 1560-1568 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.058
-
N. Boufaden, R. Akkari, B. Pawelec, J. L. G. Fierro, M. S. Zina, and A. Ghorbel, Dehydrogenation of methylcyclohexane to toluene over partially reduced Mo-
$SiO_2$ catalysts, Appl. Catal. A, 502, 329-339 (2015). https://doi.org/10.1016/j.apcata.2015.05.026 - B. K. Boggs and G. G. Botte, On-board hydrogen storage and production: An application of ammonia electrolysis, J. Power Sources, 192, 573-581 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.018
- R. Hattenbach, Transportation & delivery of anhydrous ammonia, Chemical Marketing Services, Inc., CO, USA (2012).
- K. E. Lamb, M. D. Dolan, and D. F. Kennedy, Ammonia for hydrogen storage: A review of catalytic ammonia decomposition and hydrogen separation and purification, Int. J. Hydrogen Energy, 44, 3580-3593 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.024
- A. Klerke, C. H. Christensen, J. K. Norskov, and T. Vegge, Ammonia for hydrogen storage: Challenges and opportunities, J. Mater. Chem., 18, 2304-2310 (2008). https://doi.org/10.1039/b720020j
- M. Aziz, T. Oda, and T. Kashiwagi, Comparison of liquid hydrogen, methylcyclohexane and ammonia on energy efficiency and economy, Energy Procedia, 158, 4086-4091 (2019). https://doi.org/10.1016/j.egypro.2019.01.827
- N. Hanada, S. Hino, T. Ichikawa, H. Suzuki, K. Takai, and Y. Kojima, Hydrogen generation by electrolysis of liquid ammonia, Chem. Commun., 46, 7775-7777 (2010). https://doi.org/10.1039/c0cc01982h
- J. Lee, Y. Yi, and S. Uhm, Understanding underlying processes of water electrolysis, J. Korean Ind. Eng. Chem., 19, 357-365 (2008).
- T. V. Choudhary, C. Sivadinarayana, and D. W. Goodman, Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications, Catal. Lett., 72, 197-201 (2001). https://doi.org/10.1023/A:1009023825549
-
R. Atsumi, R. Noda, H. Takagi, L. Vecchione, A. Di Carlo, Z. Del Prete, and K. Kuramoto, Ammonia decomposition activity over
$Ni/SiO_2$ catalysts with different pore diameters, Int. J. Hydrogen Energy, 39, 13954-13961 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.003 - Z.-P. Hu, C.-C. Weng, C. Chen, and Z.-Y. Yuan, Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: A comparative study of the preparation methods, Appl. Catal. A, 562, 49-57 (2018). https://doi.org/10.1016/j.apcata.2018.05.038
- B. X. Dong, T. Ichikawa, N. Hanada, S. Hino, and Y. Kojima, Liquid ammonia electrolysis by platinum electrodes, J. Alloys Compd., 509, S891-S894 (2011). https://doi.org/10.1016/j.jallcom.2010.10.157
- H. Yamamoto, H. Miyaoka, S. Hino, H. Nakanishi, T. Ichikawa, and Y. Kojima, Recyclable hydrogen storage system composed of ammonia and alkali metal hydride, Int. J. Hydrogen Energy, 34, 9760-9764 (2009) https://doi.org/10.1016/j.ijhydene.2009.10.034
- W. I. F. David, J. W. Makepeace, S. K. Callear, H. M. A. Hunter, J. D. Taylor, T. J. Wood and M. O. Jones, Hydrogen production from ammonia using sodium amide, J. Am. Chem. Soc., 136, 13082-13085 (2014). https://doi.org/10.1021/ja5042836
- J. Gwak, M. Choun, and J. Lee, Alkaline ammonia electrolysis on electrodeposited platinum for controllable hydrogen production, ChemSusChem, 9, 403-408 (2016). https://doi.org/10.1002/cssc.201501046
- R. Burdon, G. Palmer, and S. Chakraborty, National Hydrogen Strategy-Submission, 1-23, The Council of Australian Governments (COAG) Energy Council, Australia (2019).
- G. Thomas and G. Parks, Potential Roles of Ammonia in a Hydrogen Economy: A Study of Issues Related to the Use of Ammonia for Onboard Vehicular Hydrogen Storage, US DOE, 5-23, U.S. Department of Energy, Southwest Washington, D.C., USA (2006).
- S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, The U.S. Department of Energy's national hydrogen storage project: Progress towards meeting hydrogen-powered vehicle requirements, Catal. Today, 120, 246-256 (2007). https://doi.org/10.1016/j.cattod.2006.09.022
- S. Bruce, M. Temminghoff, J. Hayward, E. Schmidt, C. Munnings, D. Palfreyman, and P. Hartley, National Hydrogen Roadmap, CSIRO, 1-92, CSIRO, Australia, Australia (2018).
- M. Nagashima, Japan's Hydrogen Strategy and Its Economic and Geopolitical Implications, IFRI, 12-75, IFRI, Paris, France (2018).