Browse > Article
http://dx.doi.org/10.14478/ace.2019.1094

Potential Applicabilities of Ammonia in Future Hydrogen Energy Supply Industries  

Lee, Sooyoung (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.6, 2019 , pp. 667-672 More about this Journal
Abstract
As a non-renewable energy source, fossil fuel causes environment problems, numerous efforts have been made for a global decarbonization, for example, the realization of Power 2 Gas (P2G) system as a definitive research goal. In particular, ammonia is regarded as an emerging source since it can be used as a hydrogen carrier and production alongside for fuel cell applications. In this mini-review, we summarized the properties of ammonia and further highlighted the worldwide research trend for its superb potential in hydrogen energy supply industries.
Keywords
Hydrogen; Ammonia; Electrolysis; P2G; Carrier;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, and Y. Kojima, Review on ammonia absorption materials: Metal hydrides, halides, and borohydrides, ACS Appl. Energy Mater., 1, 232-242 (2018).   DOI
2 Y. Zhou, G. Zhang, M. Yu, X. Wang, J. Lv, and F. Yang, Free-standing 3D porous N-doped graphene aerogel supported platinum nanocluster for efficient hydrogen production from ammonia electrolysis, ACS Sustain. Chem. Eng., 6, 8437-8446 (2018).   DOI
3 H. I. Park, I. Kim, B. K. Lee, J. R. Haw, and T. Hur, Life cycle assessment on hydrogen production by direct thermal cracking of natural gas, J. Korean Ind. Eng. Chem., 14, 799-806 (2003).
4 M. Gotz, J. Lefebvre, F. Mors, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, and T. Kolb, Renewable power-to-gas: A technological and economic review, Renew. Energy, 85, 1371-1390 (2016).   DOI
5 I. A. Gondal,, Hydrogen integration in power-to-gas networks, Int. J. Hydrogen Energy, 44, 1803-1815 (2019).   DOI
6 S. B. Walker, M. Fowler, and L. Ahmadi, Comparative life cycle assessment of power-to-gas generation of hydrogen with a dynamic emissions factor for fuel cell vehicles, J. Energy Storage, 4, 62-73 (2015).   DOI
7 S. Uhm, M. Seo, and J. Lee, Review: Competitiveness of formic acid fuel cells: In comparison with methanol, J. Korean Ind. Eng. Chem., 27, 123-127 (2016).
8 A. Alera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69, 63-102 (2018).   DOI
9 R. Lan and S. Tao, Ammonia as a suitable fuel for fuel cells, Front. Energy Res., 2, 1-4 (2014).
10 M. Xue, Q. Wang, B.-L. Lin, and K. Tsunemi, Assessment of ammonia as an energy carrier from the perspective of carbon and nitrogen footprints, ACS Sustain. Chem. Eng., 7, 12494-12500 (2019).   DOI
11 W. Wang, J. M. Herreros, A. Tsolakis, and A. P. E. York, Ammonia as hydrogen carrier for transportation: Investigation of the ammonia exhaust gas fuel reforming, Int. J. Hydrogen Energy, 38, 9907-9917 (2013).   DOI
12 A. T. Wijayanta, T. Oda, C. W. Purnomo, T. Kashiwagi, and M. Aziz, Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review, Int. J. Hydrogen Energy, 44, 15026-15044 (2019).   DOI
13 H. Quack, Conceptual design of a high efficiency large capacity hydrogen liquefier, AIP Conf. Proc., 613, 255-263 (2002).
14 F. Shiozawa, Energy carrier towards the creation of hydrogen society, IEEI, http://ieei.or.jp/2015/05/expl150501/2/
15 A. Godula-Jopek, W. Jehle, and J. Wellnitz, Hydrogen Storage Technologies: New Materials, Transport and Infrastructure, J. Wellnitz, 11-79, Wiley, NY, USA (2012).
16 D. O. Berstad, J. H. Stang, and P. Neksa, Comparison criteria for large-scale hydrogen liquefaction processes, Int. J. Hydrogen Energy, 34, 1560-1568 (2009).   DOI
17 N. Boufaden, R. Akkari, B. Pawelec, J. L. G. Fierro, M. S. Zina, and A. Ghorbel, Dehydrogenation of methylcyclohexane to toluene over partially reduced Mo-$SiO_2$ catalysts, Appl. Catal. A, 502, 329-339 (2015).   DOI
18 B. K. Boggs and G. G. Botte, On-board hydrogen storage and production: An application of ammonia electrolysis, J. Power Sources, 192, 573-581 (2009).   DOI
19 R. Hattenbach, Transportation & delivery of anhydrous ammonia, Chemical Marketing Services, Inc., CO, USA (2012).
20 K. E. Lamb, M. D. Dolan, and D. F. Kennedy, Ammonia for hydrogen storage: A review of catalytic ammonia decomposition and hydrogen separation and purification, Int. J. Hydrogen Energy, 44, 3580-3593 (2019).   DOI
21 Z.-P. Hu, C.-C. Weng, C. Chen, and Z.-Y. Yuan, Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: A comparative study of the preparation methods, Appl. Catal. A, 562, 49-57 (2018).   DOI
22 M. Aziz, T. Oda, and T. Kashiwagi, Comparison of liquid hydrogen, methylcyclohexane and ammonia on energy efficiency and economy, Energy Procedia, 158, 4086-4091 (2019).   DOI
23 N. Hanada, S. Hino, T. Ichikawa, H. Suzuki, K. Takai, and Y. Kojima, Hydrogen generation by electrolysis of liquid ammonia, Chem. Commun., 46, 7775-7777 (2010).   DOI
24 J. Lee, Y. Yi, and S. Uhm, Understanding underlying processes of water electrolysis, J. Korean Ind. Eng. Chem., 19, 357-365 (2008).
25 T. V. Choudhary, C. Sivadinarayana, and D. W. Goodman, Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications, Catal. Lett., 72, 197-201 (2001).   DOI
26 R. Atsumi, R. Noda, H. Takagi, L. Vecchione, A. Di Carlo, Z. Del Prete, and K. Kuramoto, Ammonia decomposition activity over $Ni/SiO_2$ catalysts with different pore diameters, Int. J. Hydrogen Energy, 39, 13954-13961 (2014).   DOI
27 B. X. Dong, T. Ichikawa, N. Hanada, S. Hino, and Y. Kojima, Liquid ammonia electrolysis by platinum electrodes, J. Alloys Compd., 509, S891-S894 (2011).   DOI
28 H. Yamamoto, H. Miyaoka, S. Hino, H. Nakanishi, T. Ichikawa, and Y. Kojima, Recyclable hydrogen storage system composed of ammonia and alkali metal hydride, Int. J. Hydrogen Energy, 34, 9760-9764 (2009)   DOI
29 A. Klerke, C. H. Christensen, J. K. Norskov, and T. Vegge, Ammonia for hydrogen storage: Challenges and opportunities, J. Mater. Chem., 18, 2304-2310 (2008).   DOI
30 W. I. F. David, J. W. Makepeace, S. K. Callear, H. M. A. Hunter, J. D. Taylor, T. J. Wood and M. O. Jones, Hydrogen production from ammonia using sodium amide, J. Am. Chem. Soc., 136, 13082-13085 (2014).   DOI
31 J. Gwak, M. Choun, and J. Lee, Alkaline ammonia electrolysis on electrodeposited platinum for controllable hydrogen production, ChemSusChem, 9, 403-408 (2016).   DOI
32 S. Bruce, M. Temminghoff, J. Hayward, E. Schmidt, C. Munnings, D. Palfreyman, and P. Hartley, National Hydrogen Roadmap, CSIRO, 1-92, CSIRO, Australia, Australia (2018).
33 R. Burdon, G. Palmer, and S. Chakraborty, National Hydrogen Strategy-Submission, 1-23, The Council of Australian Governments (COAG) Energy Council, Australia (2019).
34 G. Thomas and G. Parks, Potential Roles of Ammonia in a Hydrogen Economy: A Study of Issues Related to the Use of Ammonia for Onboard Vehicular Hydrogen Storage, US DOE, 5-23, U.S. Department of Energy, Southwest Washington, D.C., USA (2006).
35 S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, The U.S. Department of Energy's national hydrogen storage project: Progress towards meeting hydrogen-powered vehicle requirements, Catal. Today, 120, 246-256 (2007).   DOI
36 M. Nagashima, Japan's Hydrogen Strategy and Its Economic and Geopolitical Implications, IFRI, 12-75, IFRI, Paris, France (2018).