• Title/Summary/Keyword: Gas Electron Diffraction

Search Result 321, Processing Time 0.029 seconds

Characteristics of SnO2 Thick Film Gas Sensors Doped with Catalyst (촉매가 첨가된 SnO2 후막형 가스센서의 특성 연구)

  • Lee, Don-Kyu;Yu, Yoon-Sick;Lee, Ji-Young;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.622-626
    • /
    • 2010
  • Cu doped $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $500^{\circ}C$ in air, respectively. Structural properties of $SnO_2$ by X-ray diffraction showed (110), (101) and (211) dominant tetragonal phase. The effects of catalyst Cu in $SnO_2$-based gas sensors were investigated. Sensitivity of $SnO_2$:Cu sensors to 2,000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas was investigated for various Cu concentration. The highest sensitivity to $CO_2$ gas and $H_2S$ gas of Cu doped $SnO_2$ gas sensors was observed at the 8 wt% and 12 wt% Cu concentration, respectively. The improved sensitivity in the Cu doped $SnO_2$ gas sensors was explained by decrease of electron depletion region in Cu and $SnO_2$ junction, and increase of reactive oxygen and surface area in the $SnO_2$.

Highly sensitive and selective NO2 gas sensor at low temperature based on SnO2 nanowire network (SnO2 나노와이어를 이용한 저온동작 고감도 고선택성 NO2 가스센서)

  • Kim, Yoojong;Bak, So-Young;Lee, Jeongseok;Lee, Se-Hyeong;Woo, Kyoungwan;Lee, Sanghyun;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2021
  • In this paper, methods for improving the sensitivity of gas sensors to NO2 gas are presented. A gas sensor was fabricated based on an SnO2 nanowire network using the vapor-phase-growth method. In the gas sensor, the Au electrode was replaced with a fluorinedoped tin oxide (FTO) electrode, to achieve high sensitivity at low temperatures and concentrations. The gas sensor with the FTO electrode was more sensitive to NO2 gas than the sensor with the Au electrode: notably, both sensors were based on typical SnO2 nanowire network. When the Au electrode was replaced by the FTO electrode, the sensitivity improved, as the contact resistance decreased and the surface-to-volume ratio increased. The morphological features of the fabricated gas sensor were characterized in detail via field-emission scanning electron microscopy and X-ray diffraction analysis.

플라즈마 도핑 후 급속열처리법을 이용한 n+/p 얕은 접합 형성

  • Do, Seung-U;Seo, Yeong-Ho;Lee, Jae-Seong;Lee, Yong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.50-50
    • /
    • 2009
  • In this paper, the plasma doping is performed on p-type wafers using $PH_3$ gas(10 %) diluted with He gas(90 %). The wafer is placed in the plasma generated with 200 W and a negative DC bias (1 kV) is applied to the substrate for 60 sec under no substrate heating. the flow rate of the diluted $PH_3$ gas and the process pressure are 100 sccm and 10 mTorr, respectively. In order to diffuse and activate the dopant, annealing process such as rapid thermal annealing (RTA) is performed. RTA process is performed either in $N_2$, $O_2$ or $O_2+N_2$ ambient at $900{\sim}950^{\circ}C$ for 10 sec. The sheet resistance is measured using four point probe. The shallow n+/p doping profiles are investigated using secondary ion mass spectromtry (SIMS). The analysis of crystalline defect is also done using transmission electron microscopy (TEM) and double crystal X-ray diffraction (DXRD).

  • PDF

The Effect of CTAB on the Citrate Sol-gel Process for the Synthesis of Sodium Beta-Alumina Nano-Powders

  • Wang, Zaihua;Li, Xinjun;Feng, Ziping
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1310-1314
    • /
    • 2011
  • Sodium beta-alumina (SBA) nano-powders were synthesized by the citrate sol-gel process, and the effects of the cationic surfactant n-cetyltrimethylammonium bromide surfactant (CTAB) were investigated. The structure and morphology of the nano-powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques, respectively. The effects of CTAB on the citrate sol-gel process and the SBA formation were investigated by thermo gravimetric/differential thermal analysis (TG/DTA) and Fourier transform infrared spectroscopy (FTIR). The conductivity of ceramic pellets of SBA was measured by electrochemical impedance spectroscopy (EIS). The results showed that the CTAB inhibited the agglomeration of SBA powders effectively and consequently decreased the crystallization temperature of SBA, about $150^{\circ}C$ lower than that of the sample without CTAB. The measured conductivity of SBA was $1.21{\times}10^{-2}S{\cdot}cm^{-1}$ at $300^{\circ}C$.

Optical Properties and Structural Characteristics of Gallium Nitride Thin Films Prepared by Radio Frequency Magnetron Sputtering

  • Cho, Yeon Ki;Kim, Joo Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.248.2-248.2
    • /
    • 2014
  • In this study, the optical properties and structural characteristics of gallium nitride (GaN) thin films prepared by radio frequency (RF) magnetron sputtering were investigated. Auger electron and X-ray photoelectron spectra showed that the deposited films consisted mainly of gallium and nitrogen. The presence of oxygen was also observed. The optical bandgap of the GaN films was measured to be approximately 3.31 eV. The value of the refractive index of the GaN films was found to be 2.36 at a wavelength of 633 nm. X-ray diffraction data revealed that the crystalline phase of the deposited GaN films changed from wurtzite to zinc-blende phase upon decreasing the sputtering gas pressure. Along with the phase change, a strong dependence of the microstructure of the GaN films on the sputtering gas pressure was also observed. The microstructure of the GaN films changed from a voided columnar structure having a rough surface to an extremely condensed structure with a very smooth surface morphology as the sputtering gas pressure was reduced. The relationship between the phase and microstructure changes in the GaN films will be discussed.

  • PDF

Structural and discharge characteristics of MgO films prepared by Arc Ion Plating (AIP) method

  • Kim, Jong-Kuk;Kim, Do-Geun;Lee, Eun-Sung;Lee, Sung-Hun;Lee, Gun-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.625-627
    • /
    • 2002
  • MgO thin films were deposited on glass and (100) Si substrates by an Arc Ion Plating (AIP) equipment using a magnesium metal target at various oxygen gas flow. In this work, we investigated the relationship between the structural properties and the discharge characteristics of MgO coating layers. X-ray diffraction and AFM have been used to study behaviors of the structure and surface morphology. The optical transmittance and the ion induced secondary electron emission coefficient of the MgO films have been also measured. The resistivity of the deposited MgO films was gradually increased from 0.17 G ohm/${\square}$ to 0.35 G ohm/${\square}$ with the oxygen gas flow. The growth rate of the MgO coating layer was decreased with increasing the oxygen gas flow, while the optical transmittance was improved.

  • PDF

Characteristics and Processing Effects of $ZrO_2$ Thin Films grown by Metal-Organic Molecular Beam Epitaxy (금속 유기 분자 빔 에피택시로 성장시킨 $ZrO_2$ 박막의 특성과 공정변수가 박막 성장률에 미치는 영향)

  • Kim, Myung-Suk;Go, Young-Don;Hong, Jang-Hyuk;Jeong, Min-Chang;Myoung, Jae-Min;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.452-455
    • /
    • 2003
  • [ $ZrO_2$ ] dielectric layers were grown on the p-type Si (100) substrate by metalorganic molecular beam epitaxy(MOMBE). Zrconium t-butoxide, $Zr(O{\cdot}t-C_4H_9)_4$ was used as a Zr precursor and Argon gas was used as a carrier gas. The thickness of the layers was measured by scanning electron microscopy (SEM) and the properties of the $ZrO_2$ layers were evaluated by X-ray diffraction, high frequency capacitance-voltage measurement. and HF C-V measurements have shown that $ZrO_2$ layer grown by MOMBE has a high dielectric constant (k=18-19). The growth rate is affected by various process variables such as substrate temperature, bubbler temperature, Ar, and $O_2$ gas flows.

  • PDF

Effect of ON/OFF Cycles of Ar Gas on Structural and Optical Properties of ZnO Nanostructure Grown by Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Cho, Min-Young;Kim, So-A-Ram;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.415-415
    • /
    • 2012
  • ZnO nanostructures were synthesized by a vapor phase transport process in a single-zone furnace within a horizontal quartz tube with an inner diameter of 38 mm and a length of 485 mm. The ZnO nanostructures were grown on Au-catalyzed Si(100) substrates by using a mixture of zinc oxide and graphite powders. The growth of ZnO nanostructures was conducted at $800^{\circ}C$ for 30 min. High-purity Ar and $O_2$ gases were pushed through the quartz tube during the process at a flow rate of 100 and 10 sccm, respectively. The sequence of ON/OFF cycles of the Ar gas flow was repeated, while the $O_2$ flow is kept constant during the growth time. The Ar gas flow was ON for 1 min/cycle and that was OFF for 2 min/cycle. The structure and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscope, X-ray diffraction, temperature-dependent photoluminescence. The preferred orientation of the ZnO nanostructures was along c-axis with hexagonal wurtzite structure.

  • PDF

Corrosion and Strength Degradation Characteristics of 1.25Cr-0.5Mo Steel under SO2 Gas Environment (SO2 가스 환경 하에서 1.25Cr-0.5Mo 강의 부식 및 강도 저하 특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.149-156
    • /
    • 2018
  • The corrosion and strength degradation characteristics of 1.25Cr-0.5Mo steels were studied under $650^{\circ}C$ in $76%N_2+6%O_2+16%CO_2+2%SO_2$ gas condition up to 500 hrs. Corroded specimens were characterized by weight gain, scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDS), and X-ray diffraction(XRD). The tensile test was conducted to evaluate the mechanical strength and fracture mode with corrosion at high temperature. As the results of the experiments, thick Fe-rich oxide layers over $200{\mu}m$ were formed on the surface within 500 hrs. The thick oxide layers are formed with reduction of the cross-sectional area of the specimens. Thus, the strength tended to decrease with reduction of the cross-sectional area.

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.