Browse > Article
http://dx.doi.org/10.5695/JKISE.2018.51.3.149

Corrosion and Strength Degradation Characteristics of 1.25Cr-0.5Mo Steel under SO2 Gas Environment  

Jung, Kwang-Hu (Division of Marine Engineering, Mokpo National Maritime University)
Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
Publication Information
Journal of the Korean institute of surface engineering / v.51, no.3, 2018 , pp. 149-156 More about this Journal
Abstract
The corrosion and strength degradation characteristics of 1.25Cr-0.5Mo steels were studied under $650^{\circ}C$ in $76%N_2+6%O_2+16%CO_2+2%SO_2$ gas condition up to 500 hrs. Corroded specimens were characterized by weight gain, scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDS), and X-ray diffraction(XRD). The tensile test was conducted to evaluate the mechanical strength and fracture mode with corrosion at high temperature. As the results of the experiments, thick Fe-rich oxide layers over $200{\mu}m$ were formed on the surface within 500 hrs. The thick oxide layers are formed with reduction of the cross-sectional area of the specimens. Thus, the strength tended to decrease with reduction of the cross-sectional area.
Keywords
1.25Cr-0.5Mo steel; High-temperature; $SO_2$ gas; Corrosion; Strength degradation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Handbook, M. (1990). Properties and selection: Irons steels and high performance alloys, Vol. 1; ASM International. Handbook Committee.
2 Bhadeshia HKDH. Bainite in steels. London: The Institute of Materials; 1992. p. 329-46.
3 S. K. Das, A. Joarder, A. Mitra, Magnetic Barkhausen emissions and microstructural degradation study in 1.25 Cr-0.50 Mo steel during high temperature exposure. NDT & E Int., 37(3) (2004) 243-248.   DOI
4 S. H. Bak, M. J. Kim, J. H. Lee, S. J. Bong, S. K. Kim, D. B. Lee, High-temperature Oxidation Kinetics and Scales Formed on Fe-2.3% Cr-1.6% W Alloy. J. Korean Ceram. Soc., 48(1) (2011) 57-62.   DOI
5 A. del Carmen Wong-Moreno, A. B. Luisillo, Hightemperature oxidation of 1.25 Cr-0.5 Mo steel in $SO_2$, Oxid. Met., 35(3-4) (1991) 245-258.   DOI
6 A. Jardnas, J. E. Svensson, L. G. Johansson, Evidence for suppression of the oxidation of a Fe 2.25 Cr 1 Mo steel by traces of $SO_2$, In Materials science forum, 369, Trans Tech Publ., (2001) 173-180.
7 A. Skalli, A. Galerie, M. Caillet, Thermal corrosion of a chromium-molybdenum steel by $SO_2$. Kinetic, thermodynamic and morphological aspects. Solid State Ionics, 34(4) (1989) 261-267.   DOI
8 D. B. Lee, High-temperature Corrosion by Chlorides in Biomass-fired Plants. J. Kor. Inst. Surf. Eng., 49 (2016) 14-19.   DOI
9 P. Viklund, Superheater corrosion in biomass and waste fired boilers: characterisation, causes and prevention of chlorine-induced corrosion. Diss. KTH R. Inst. Technol., (2013) 6.
10 S. M. Bruemmer, B. W. Arey and L. A. Charlot. Influence of chromium depletion on intergranular stress corrosion cracking of 304 stainless steel, Corros., 48 (1992) 42-49.   DOI
11 S. Zhang, T. Shibata, T. Haruna, Initiation and propagation of IGSCC for sensitized type 304 stainless steel in dilute sulfate solutions, Corros. Sci., 39 (1997) 1725-1739.   DOI
12 A. Y. Kina, V. M. Souza, S. S. M. Tavares, J. M. Pardal, J. A. Souza, Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service, Mater. charact., 59 (2008) 651-655.   DOI
13 K. G. Nam, Y. S. He, J. C. Chang, K. S. Shin, Microstructural Evolution of Super304H Steel upon Long-Term Aging, Key Eng. Mater., 727 (2017) 36-42.   DOI
14 X. Bai, J. Pan, G. Chen, J. Liu, J. Wang, T. Zhang, W. Tang, Effect of high temperature aging on microstructure and mechanical properties of HR3C heat resistant steel, Mater. Sci. and Tech., 30 (2014) 205-210.   DOI
15 E. A. Trillo, L. E. Murr, Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel, Acta mater., 47 (1998) 235-245.   DOI
16 D. A. Jones, Principles and prevention of corrosion. (1992) Macmillan.
17 A. Iseda, H. Okada, H. A. Semba, M. Igarashi, Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers, Energy Mater., 2 (2007) 199-206.   DOI
18 M. Farooq, Strengthening and degradation mechanisms in austenitic stainless steels at elevated temperature, Diss. KTH Royal Institute of Technology (2013) 26.
19 H. Tanaka, M. Murata, F. Abe, H. Irie, Microstructural evolution and change in hardness in type 304H stainless steel during long-term creep, Mater. Sci. and Eng., A 319 (2001) 788-791.
20 E. A. Trillo, R. Beltran, J. G. Maldonado, R. J. Romero, L. R. Murr, W. W. Fisher, A. H. Advani, Combined effects of deformation (strain and strain state), grain size, and carbon content on carbide precipitation and corrosion sensitization in 304 stainless steel, Mater. Charact., 35 (1995) 99-112.   DOI
21 X. Xiao, G. Liu, B. Hu, J. Wang, W. Ma, Coarsening behavior for $M_{23}C_6$ carbide in 12% Cr-reduced activation ferrite/martensite steel: experimental study combined with DICTRA simulation, J. Mater. Sci., 48 (2013) 5410-5419.   DOI
22 N. Otsuka, Fracture behavior of steam-grown oxide scales formed on 2-12% Cr steels. Materials at High Temperatures, 22(1-2) (2005) 131-138.   DOI
23 W. Wang, Z. Wang, W. Li, J. Tian, W. Zhong, J. Lin, "Evolution of $M_{23}C_6$ phase in HR3C steel aged at $650^{\circ}C$." Mater. High Temp., 33 (2016) 276-282.   DOI