• Title/Summary/Keyword: Galois extension

Search Result 24, Processing Time 0.029 seconds

THE INVERSE GALOIS PROBLEM

  • MATYSIAK, LUKASZ
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.765-767
    • /
    • 2022
  • The inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers. This problem, first posed in the early 19th century, is unsolved. In other words, we consider a pair - the group G and the field K. The question is whether there is an extension field L of K such that G is the Galois group of L. In this paper we present the proof that any group G is a Galois group of any field extension. In other words, we only consider the group G. And we present the solution to the inverse Galois problem.

LINEAR AUTOMORPHISMS OF SMOOTH HYPERSURFACES GIVING GALOIS POINTS

  • Hayashi, Taro
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.617-635
    • /
    • 2021
  • Let X be a smooth hypersurface X of degree d ≥ 4 in a projective space ℙn+1. We consider a projection of X from p ∈ ℙn+1 to a plane H ≅ ℙn. This projection induces an extension of function fields ℂ(X)/ℂ(ℙn). The point p is called a Galois point if the extension is Galois. In this paper, we will give necessary and sufficient conditions for X to have Galois points by using linear automorphisms.

A GALOIS EXTENSION WITH GALOIS GROUP DIHEDRAL GROUP OR GENERALIZED QUATERNION GROUP

  • Hwang, Yoon-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.641-644
    • /
    • 2005
  • Let L/F be a Galois quadratic extension such that F contains a primitive n-th root of 1. Let N = L(${\alpha}^{{\frac{1}{n}}$) where ${\alpha}{\in}L{\ast}$. We show that if $N_{L/F}({\alpha})\;{\in}L^n{\cap}F$, and [N : L] = m, then $G(N/ F) {\simeq}D_m$ or generalized quaternion group whether $N_{L/F}({\alpha})\;{\in}\;F^n\;or\;{\notin}F^n$, respectively.

GALOIS GROUPS FOR PERMUTATIONS ON SETS

  • PARK HONG GOO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.657-663
    • /
    • 2005
  • In this paper, we consider groups of permutations S on a set A acting on subsets X of A. In particular, we show that if $X_2{\subseteq}X_1{\subseteq}A$ and Y is an S-normal extension of $X_2 in X_1$, then the Galois group $G_{S}(X_1/Y){\;}of{\;}X_1{\;}over{\;}X_2$ relative to S is an S-closed subgroup of $G_{S}(X_1/X_2)$ in the setting of a Galois theory (correspondence) for this situation.

REMARKS ON GAUSS SUMS OVER GALOIS RINGS

  • Kwon, Tae Ryong;Yoo, Won Sok
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2009
  • The Galois ring is a finite extension of the ring of integers modulo a prime power. We consider characters on Galois rings. In analogy with finite fields, we investigate complete Gauss sums over Galois rings. In particular, we analyze [1, Proposition 3] and give some lemmas related to [1, Proposition 3].

  • PDF

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

GALOIS THEORY OF MATHIEU GROUPS IN CHARACTERISTIC TWO

  • Yie, Ik-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.199-210
    • /
    • 2007
  • Given a field K and a finite group G, it is a very interesting problem, although very difficult, to find all Galois extensions over K whose Galois group is isomorphic to G. In this paper, we prepare a theoretical background to study this type of problem when G is the Mathieu group $M_{24}$ and K is a field of characteristic two.

THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.571-583
    • /
    • 2020
  • The Galois ring R of characteristic pn having pmn elements is a finite extension of the ring of integers modulo pn, where p is a prime number and n, m are positive integers. In this paper, we develop the concepts of Jacobi sums over R and under the assumption that the generating additive character of R is trivial on maximal ideal of R, we obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums.

GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS

  • Lee, Jung-Rye
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.253-260
    • /
    • 2002
  • For an outer action $\alpha$ of a finite group G on a factor M, it was proved that H is a, normal subgroup of G if and only if there exists a finite group F and an outer action $\beta$ of F on the crossed product algebra M $\times$$_{\alpha}$ G = (M $\times$$_{\alpha}$ F. We generalize this to infinite group actions. For an outer action $\alpha$ of a discrete group, we obtain a Galois correspondence for crossed product algebras related to normal subgroups. When $\alpha$ satisfies a certain condition, we also obtain a Galois correspondence for fixed point algebras. Furthermore, for a minimal action $\alpha$ of a compact group G and a closed normal subgroup H, we prove $M^{G}$ = ( $M^{H}$)$^{{beta}(G/H)}$for a minimal action $\beta$ of G/H on $M^{H}$.f G/H on $M^{H}$.TEX> H/.