• Title/Summary/Keyword: Gallium nitride

Search Result 152, Processing Time 0.031 seconds

6-18 GHz Reactive Matched GaN MMIC Power Amplifiers with Distributed L-C Load Matching

  • Kim, Jihoon;Choi, Kwangseok;Lee, Sangho;Park, Hongjong;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • A commercial $0.25{\mu}m$ GaN process is used to implement 6-18 GHz wideband power amplifier (PA) monolithic microwave integrated circuits (MMICs). GaN HEMTs are advantageous for enhancing RF power due to high breakdown voltages. However, the large-signal models provided by the foundry service cannot guarantee model accuracy up to frequencies close to their maximum oscillation frequency ($F_{max}$). Generally, the optimum output load point of a PA varies severely according to frequency, which creates difficulties in generating watt-level output power through the octave bandwidth. This study overcomes these issues by the development of in-house large-signal models that include a thermal model and by applying distributed L-C output load matching to reactive matched amplifiers. The proposed GaN PAs have successfully accomplished output power over 5 W through the octave bandwidth.

An X-Ku Band Distributed GaN LNA MMIC with High Gain

  • Kim, Dongmin;Lee, Dong-Ho;Sim, Sanghoon;Jeon, Laurence;Hong, Songcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.818-823
    • /
    • 2014
  • A high-gain wideband low noise amplifier (LNA) using $0.25-{\mu}m$ Gallium-Nitride (GaN) MMIC technology is presented. The LNA shows 8 GHz to 15 GHz operation by a distributed amplifier architecture and high gain with an additional common source amplifier as a mid-stage. The measurement results show a flat gain of $25.1{\pm}0.8dB$ and input and output matching of -12 dB for all targeted frequencies. The measured minimum noise figure is 2.8 dB at 12.6 GHz and below 3.6 dB across all frequencies. It consumes 98 mA with a 10-V supply. By adjusting the gate voltage of the mid-stage common source amplifier, the overall gain is controlled stably from 13 dB to 24 dB with no significant variations of the input and output matching.

Highly Linear 2-Stage Doherty Power Amplifier Using GaN MMIC

  • Jee, Seunghoon;Lee, Juyeon;Kim, Seokhyeon;Park, Yunsik;Kim, Bumman
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.399-404
    • /
    • 2014
  • A power amplifier (PA) for a femto-cell base station should be highly efficient, linear and small. The efficiency for amplification of a high peak-to-average power ratio (PAPR) signal was improved by designing an asymmetric Doherty PA (DPA). The linearity was improved by applying third-order inter-modulation (IM3) cancellation method. A small size is achieved by designing the DPA using GaN MMIC process. The implemented 2-stage DPA delivers a power-added efficiency (PAE) of 38.6% and a gain of 33.4 dB with an average power of 34.2 dBm for a 7.2 dB PAPR 10 MHz bandwidth LTE signal at 2.14 GHz.

Design of an High Efficiency Pallet Power Amplifier Module (S-대역 고효율 Pallet 전력증폭기 모듈 설계)

  • Choi, Gil-Wong;Kim, Hyoung-Jong;Choi, Jin-Joo;Choi, Jun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1071-1079
    • /
    • 2010
  • This paper describes the design and fabrication of a high-efficiency GaN HEMT(Gallium Nitride High-electron Mobility Transistor) Pallet power amplifier module for S-band phased array radar applications. Pallet amplifier module has a series 2-cascaded power amplifier and the final amplification-stage consists of balanced GaN HEMT transistor. In order to achieve high efficiency characteristic of pallet power amplifier module, all amplifiers are designed to the switching-mode amplifier. We performed with various PRF(Pulse Repetition Frequency) of 1, 10, 100 and 1000Hz at a fixed pulse width of $100{\mu}s$. In the experimental results, the output power, gain, and drain efficiency(${\eta}_{total}$) of the Pallet power amplifier module are 300W, 33dB, and 51% at saturated output power of 2.9GHz, respectively.

A Study on the Application of High-Power GaN SSPA for Miniature Radar (GaN 고출력 증폭기의 초소형 레이다 적용에 관한 연구)

  • Lee, Sang_yeop;Yi, Jaewoong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.574-581
    • /
    • 2016
  • Trend on high-power GaN(Gallium Nitride) SSPA(Solid-State Power Amplifier) and its availability in miniature radar systems are presented. There are numerous studies on high-power GaN devices since they have some characteristics of high-breakdown voltage, high power density, and high-temperature stability. Recent scaled GaN technology makes it possible to apply it in SSPAs for W- and G-band applications, with increasing its maximum frequency. In addition, it leads to downsizing and power-efficiency improvement of SSPAs, which means that GaN SSPAs can be available in miniature radar systems. This study also shows radar performance and comparison in the case of using such SSPAs at three frequency bands of Ku, Ka, and W. Finally, we demonstrate prospects of scaled GaN SSPAs in future miniature radar systems.

Implementation and Problem Analysis of Phase Shifted dc-dc Full Bridge Converter with GaN HEMT (Cascode GaN HEMT를 적용한 위상 천이 dc-dc 컨버터의 구현 및 문제점 분석)

  • Joo, Dong-Myoung;Kim, Dong-Sik;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.558-565
    • /
    • 2015
  • Gallium nitride high-electron mobility transistor (GaN HEMT) is the strongest candidate for replacing Si MOSFET. Comparing the figure of merit (FOM) of GaN with the state-of-the-art super junction Si MOSFET, the FOM is much better because of the wide band gap characteristics and the heterojunction structure. Although GaN HEMT has many benefits for the power conversion system, the performance of the power conversion system with the GaN HEMT is sensitive because of its low threshold voltage ($V_{th}$) and even lower parasitic capacitance. This study examines the characteristics of a phase-shifted full-bridge dc-dc converter with cascode GaN HEMT. The problem of unoptimized dead time is analyzed on the basis of the output capacitance of GaN HEMT. In addition, the printed circuit board (PCB) layout consideration is analyzed to reduce the negative effects of parasitic inductance. A comparison of the experimental results is provided to validate the dead time and PCB layout analysis for a phase-shifted full-bridge dc-dc converter with cascode GaN HEMT.

MOCVD of GaN Films on Si Substrates Using a New Single Precursor

  • Song, Seon-Mi;Lee, Sun-Sook;Yu, Seung-Ho;Chung, Taek-Mo;Kim, Chang-Gyoun;Lee, Soon-Bo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.953-956
    • /
    • 2003
  • Hexagonal GaN (h-GaN) films have been grown on Si(111) substrates by metal organic chemical vapor deposition using the azidodiethylgallium methylamine adduct, Et₂Ga(N₃)·NH₂Me, as a new single precursor. Deposition was carried out in the substrate temperature range 385-650 °C. The GaN films obtained were stoichiometric and did not contain any appreciable amounts of carbon impurities. It was also found that the GaN films deposited on Si(111) had the [0001] preferred orientation. The photoluminescence spectrum of a GaN film showed a band edge emission peak characteristic of h-GaN at 378 nm.

AlGaN/GaN Based Ultra-wideband 15-W High-Power Amplifier with Improved Return Loss

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Shin, Dong-Hwan;Yom, In-Bok;Kim, Jae-Duk;Lee, Wang-Youg;Lee, Chang-Hoon
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.972-980
    • /
    • 2016
  • An ultra-wideband microwave monolithic integrated circuit high-power amplifier with excellent input and output return losses for phased array jammer applications was designed and fabricated using commercial $0.25-{\mu}m$ AlGaN/GaN technology. To improve the wideband performance, resistive matching and a shunt feedback circuit are employed. The input and output return losses were improved through a balanced design using Lange-couplers. This three-stage amplifier can achieve an average saturated output power of 15 W, and power added efficiency of 10% to 28%, in a continuous wave operation over a frequency range of 6 GHz to 18 GHz. The input and output return losses were demonstrated to be lower than -15 dB over a wide frequency range.

Design of Parasitic Inductance Reduction in GaN Cascode FET for High-Efficiency Operation

  • Chang, Woojin;Park, Young-Rak;Mun, Jae Kyoung;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.133-140
    • /
    • 2016
  • This paper presents a method of parasitic inductance reduction for high-speed switching and high-efficiency operation of a cascode structure with a low-voltage enhancement-mode silicon (Si) metal-oxide-semiconductor field-effect transistor (MOSFET) and a high-voltage depletion-mode gallium nitride (GaN) fielde-ffect transistor (FET). The method is proposed to add a bonding wire interconnected between the source electrode of the Si MOSFET and the gate electrode of the GaN FET in a conventional cascode structure package to reduce the most critical inductance, which provides the major switching loss for a high switching speed and high efficiency. From the measured results of the proposed and conventional GaN cascode FETs, the rising and falling times of the proposed GaN cascode FET were up to 3.4% and 8.0% faster than those of the conventional GaN cascode FET, respectively, under measurement conditions of 30 V and 5 A. During the rising and falling times, the energy losses of the proposed GaN cascode FET were up to 0.3% and 6.7% lower than those of the conventional GaN cascode FET, respectively.

Growth of vertically aligned Zinc Oxide rod array on patterned Gallium Nitride epitaxial layer (패턴된 GaN 에피층 위에 ZnO 막대의 수직성장)

  • Choi, Seung-Kyu;Yi, Sung-Hak;Jang, Jae-Min;Kim, Jung-A;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.273-277
    • /
    • 2007
  • Vertically aligned Zinc Oxide rod arrays were grown by the self-assembly hydrothermal process on the GaN epitaxial layer which has a same lattice structure with ZnO. Zinc nitrate and DETA solutions are used in the hydrothermal process. The $(HfO_2)$ thin film was deposited on GaN and the patterning was made by the photolithography technique. The selective growth of ZnO rod was achieved with the patterned GaN substrate. The fabricated ZnO rods are single crystal, and have grown along hexagonal c-axis direction of (002) which is the same growth orientation of GaN epitaxial layer. The density and the size of ZnO rod can be controlled by the pattern. The optical property of ordered array of vertical ZnO rods will be discussed in the present work.