• Title/Summary/Keyword: Gallic Acid

Search Result 676, Processing Time 0.128 seconds

Simultaneous Determination of Anthraquinone, Flavonoids, and Phenolic Antidiabetic Compounds from Cassia auriculata Seeds by Validated UHPLC Based MS/MS Method

  • Girme, Aboli;Saste, Ganesh;Chinchansure, Ashish;Joshi, Swati;Kunkulol, Rahul;Hingorani, Lal;Patwardhan, Bhushan
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.82-89
    • /
    • 2020
  • A systematic isolation and characterization study for Cassia auriculata (CA) seeds resulted in identifying antidiabetic compounds 1,3,8-trihydroxyanthraquinone and quercetin, quercetin-3-O-rutinoside, gallic acid, caffeic acid, ferulic acid, and ellagic acid. The ultra-high-performance liquid chromatography based triple quadrupole mass spectrometry methodology was developed and validated for simultaneous identification and confirmation of these compounds from CA seeds. Multiple reaction monitoring (MRM) based quantification method was developed with MRM optimizer software for MS1 and MS2 mass analysis. The method was optimized on precursor ions and product ions with the ion ratio of each compound. The calibration curves of seven bioactive analytes showed excellent linearity (r2 ≥ 0.99). The quantitation results found precise (RSD, < 10 %) with good recoveries (84.58 to 101.42%). The matrix effect and extraction recoveries were found within the range (91.66 to 102.11%) for the CA seeds. This is the first MS/MS-based methodology applied to quantifying seven antidiabetic compounds in CA seeds and its extract for quality control purposes.

Antifungal Activity of Eucalyptus-Derived Phenolics Against Postharvest Pathogens of Kiwifruits

  • Oh, Soon-Ok;Kim, Jung-A;Jeon, Hae-Sook;Park, Jong-Cheol;Koh, Young-Jin;Hur, Hyun;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.322-327
    • /
    • 2008
  • Antifungal activities of natural substrances from Eucalyptus darlympleana, E. globules, E. gunnii and E. unigera were evaluated against postharvest pathogens of kiwifruits, Botrytis cinerea, Botryosphaeria dothidea, and Diaporthe actinidiae, to screen effective natural substances as an alternative to chemical fungicides. Methanol extract of the Eucalyptus trees showed strong antagonistic activity against the pathogenic fungi. Among them, E. unigera and E. darlympleana effectively inhibited mycelial growth of the pathogens. For chemical identification of the antifungal substances, the methanol extract of E. darlympleana leaves was successively partitioned with $CH_2Cl_2$, EtOAc, n-BuOH and $H_2O$. Among the fractions, $CH_2Cl_2$ and n-BuOH showed strong inhibitory activity of mycelial growth of the fungi. Five compounds were isolated from EtOAc and n-BuOH fractions subjected to $SiO_2$ column chromatography. Two phenolic compounds(gallic acid and 3,4-dihydroxybenzoic acid) and three flavonoid compounds(quercetin, quercetin-3-O-$\alpha$-L-rhamnoside, quercetin-3-O-$\beta$-glucoside) were identified by $^1H$-NMR and $^{13}C$-NMR spectroscopy. Among them, only gallic acid was found to be effective in mycelial growth and spore germination of B. cinerea at relatively high concentrations. The results suggest that gallic acid can be a safer and more acceptable alternative to current synthetic fungicides controlling soft rot decay of kiwifruit during postharvest storage.

Gallic Acid Inhibits STAT3 Phosphorylation and Alleviates DDS-induced Colitis via Regulating Cytokine Production

  • Jeong, Ji Hyun;Kim, Eun Yeong;Choi, Hee Jung;Chung, Tae Wook;Kim, Keuk Jun;Kim, So Yeon;Ha, Ki Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.5
    • /
    • pp.338-346
    • /
    • 2016
  • Signal transducer and activator of transcription 3 (STAT3) is associated with various human diseases, such as cancer, auto-immune disease, and intestinal inflammation. The limited and inadequate effect of standard approaches for treating inflammatory bowel disease (IBD) has prompted to develop alternative anti-colitis agents through inhibition of STAT3. Here, we show that gallic acid (GA), a 3,4,5-trihydroxybenzoic acid, markedly reduced phosphorylation of STAT3. Among the derivatives of benzoic acids, GA showed significant inhibition on STAT3 phosphorylation. In addition, GA ameliorated the dextran sodium sulfate (DSS)-induced acute colitis as determined by the measurement of symptomatic and histological indices. The suppression of DSS-induced acute colitis by GA treatment may be related to the regulation of cytokines and growth factors. Furthermore, GA inhibited phosphorylation of STAT3 in the colon tissue of DSS-treated mice. These findings may be useful in comprehending the molecular action of GA on STAT3 phosphorylation and provide novel insights into the potential application of GA in the treatment of STAT3-related inflammatory disease, such as IBD.

The effects of dietary photosensitizers on auto-oxidation of gallic and tannic acids (갈산과 타닌산의 자동산화에 미치는 식품 감광성분의 영향)

  • Lee, Eunbin;Lee, Hyowon;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.272-279
    • /
    • 2022
  • Polyphenols are chemically unstable, and their bioactivities are reduced through oxidation. Photosensitizers (PS) induce photo-oxidation in various food systems. In this study, effects of dietary PS such as riboflavin (Rb), erythrosin B (EB), and zinc protoporphyrin on the auto-oxidation of polyphenols, gallic acid (GA) and tannic acid (TA) were evaluated under a fluorescent light. The formation of oxidation products from GA and TA increased in a PS concentration- and irradiation time-dependent manner. In addition, Rb and EB induced significant reduction in the polyphenols contents and ABTS radical scavenging activity of GA and TA under light. PS significantly enhanced the amount of reactive oxygen species generated from GA and TA. Therefore, the interaction of polyphenols with PS under light results in acceleration of polyphenol oxidation. This phenomenon should be carefully considered during food processing and storage.

Antioxidant Properties of Tannic Acid and its Inhibitory Effects on Paraquat-Induced Oxidative Stress in Mice

  • Choi, Je-Min;Han, Jin;Yoon, Byoung-Seok;Chung, Jae-Hwan;Shin, Dong-Bum;Lee, Sang-Kyou;Hwang, Jae-Kwan;Ryang, Ryung
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.728-734
    • /
    • 2006
  • The tannins represent a highly heterogeneous group of water-soluble plant polyphenols that may play an important role in antimutagenic and antioxidant properties. We investigated the antioxidant function of tannic acid in comparison to other phenolic compounds including catechin, chlorogenic acid, cinnamic acid, ellagic acid, and gallic acid for their ability to scavenge several stable radicals and reactive oxygen species (ROS) such as ${\bullet}DPPH^+$, ${\bullet}ABTS^+$, hydrogen peroxide, hydroxyl radical, and superoxide radical. The ability of tannic acid to decrease paraquat-induced lipid oxidation in mouse liver and lung through its antioxidant properties was also assessed. The results showed that almost all the tested compounds have stable radical scavenging activity except cinnamic acid. Tannic acid, gallic acid, and ellagic acid demonstrated remarkable ROS scavenging properties toward $H_2O_2$, ${\bullet}OH^-$, ${\bullet}O_2^-$ and especially only tannic acid could inhibit paraquat-induced lipid peroxidation effectively in mouse liver and lung. Based on these results, it appears that increased number of galloyl and ortho-hydroxyl groups enhances the antioxidant activity of phenolic compounds and tannic acid is evaluated as the most effective antioxidant among all the tested compounds. These results suggest that the tannins, especially tannic acid, can be used as therapeutic agent for various diseases caused by ROS.

Terpenoids and Phenolics from Geum japonicum (뱀무로부터 테르페노이드 및 페놀성 성분의 분리)

  • Yean, Min-Hye;Kim, Ju-Sun;Hyun, Yu-Jae;Hyun, Jin-Won;Bae, Ki-Hwan;Kang, Sam-Sik
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.2
    • /
    • pp.107-121
    • /
    • 2012
  • Twenty-five compounds were isolated from the methanolic extract of Geum japonicum (Rosaceae), and their structures were identified as eleven triterpenoids [ursolic acid 3-acetate (2), cecropiacic acid 3-methyl ester (3), pomolic acid 3-acetate (5), ursonic acid (6), ursolic acid (7), pomolic acid (8), corosolic acid (9), euscaphic acid (11), arjunic acid (16), tormentic acid (18), 23-hydroxytormentic acid (21)], two saponins [rosamultin (22) and kaji-ichigoside $F_1$ (23)], two megastigmanes [blumenol A (14) and (+)-dehydrovomifoliol (15)], three flavonoids [apigenin (13), isoquercitrin (17) and tiliroside (24)], two ellagic acid derivatives [3,3'-di-O-methylellagic acid (12) and ducheside B (25)] and five others [eugenol (1), emodin (4), vanillic acid (10), gallic aldehyde (19), salidroside (20)]. The chemical structures of these compounds were identified on the basis of spectroscopic methods and comparison with literature values. This is the first report of the eleven compounds, 2~6, 10, 15, 16, 20, 23, and 25 from the genus Geum, as well as the first report of apigenin (13) and 3,3'-di-O-methylellagic acid (12) from G. japonicum. The antioxidant properties of 22 isolates (1~11, 14, 16~25) were evaluated by the intracellular reactive oxygen species (ROS) radical scavenging using 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) assay. Among them, isoquercitrin (17) showed significant scavenging activity, and gallic aldehyde (19) and ducheside B (25) showed weak scavenging activity.

Genotoxicological Safety of Octadeca-9,12-dienyl-3,4,5-trihydroxybenzoate from Gallic and Linoleic Acids and Its Biological Functions in Cream-based Emulsion (Gallic Acid와 Linoleic Acid로부터 합성한 Octadeca-9,12-dienyl-3,4,5-trihydroxybenzoate의 유전독성학적 안전성 및 화장품 제형을 통한 생리 기능성 평가)

  • Jung, Sa-Moo-El;Song, Hyun-Pa;Lee, Na-Young;Jang, Ae-Ra;Jo, Cheo-Run
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.696-700
    • /
    • 2008
  • The objective of this study was to investigate the genotoxicological safety and biological functions of octadeca-9,12-dienyl-3,4,5-trihydroxybenzoate (GA-LA) in cream-based emulsion for future application as a functional cosmetic material as well as food. GA-LA was synthesized chemically from gallic acid and linoleic acid. The Ames test showed that GA-LA did not have mutagenical toxicity. The control cream-based emulsion containing GA-LA was prepared by commercial method and tested for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Ferric reducing antioxidant power (FRAP) and inhibition effect against tyrosinase of the emulsions were tested for the evaluation of antioxidative and skin-whitening activities. The results showed that DPPH radical scavenging activity in the cream-based emulsion containing GA-LA was higher (52.65%) than that of the control (4.30%). The FRAP value of the sample was 12.85%, however, no activity was found in control. The inhibition effect of tyrosinase showed also a higher value (26.29%) when compared to the control. The results indicate that GA-LA, which showed superior antioxidative and skin-whitening activities in cream-based emulsion, is a useful functional material applicable in cosmetic products as well as food.

The Antioxidative Effects of Oregano (Origanum majorana L.) Extracts (오레가노(Origanum majorana L.) 추출물의 항산화 효과)

  • Rhim, Tae-Jin;Choi, Moo-Young
    • Korean Journal of Plant Resources
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2009
  • The objective of this study was to investigate the antioxidative capacity of oregano extracts. Amount of oregano extract at which DPPH radical scavenging activity was inhibited by 50% was $21.8{\mu}g$ as compared to 100% by pyrogallol as a reference. Total antioxidant status was examined by total antioxidant capacity against potent free radical reactions. Total antioxidant capacities of oregano extract at the amounts of 7.5 and $15{\mu}g$ were 15.1 and 31.4 nmol Trolox equivalents, respectively. Oxygen radical absorbance capacities of oregano extract at the amounts of 0.2 and $0.4{\mu}g$ were 1.4 and 2.4 nmol gallic acid equivalents, respectively. Total phenolic contents of oregano extract at the amounts of 30 and $75{\mu}g$ were 40.5 and 83.9 nmol gallic acid equivalents, respectively. The inhibitory effect of oregano extract on lipid peroxidation was examined using rat liver mitochondria induced by $FeSO_4$/ascorbic acid. Oregano extracts at the amounts of 20 and $50{\mu}g$ decreased TBARS level by 20 and 64%, respectively. Thus strong antioxidant effects of oregano extract seem to be due to, at least in part, the prevention against free radicals-induced oxidation, followed by inhibition of lipid peroxidation.